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Abstract This chapter presents an energy efficient and flexible multichannel Elec-
troencephalogram (EEG) artifact identification network and its hardware using
depthwise and separable convolutional neural networks (DS-CNN). EEG signals are
recordings of the brain activities. The EEG recordings that are not originated from
cerebral activities are termed as artifacts. Our proposed model does not need expert
knowledge for feature extraction or pre-processing of EEG data and has a very effi-
cient architecture implementable on mobile devices. The proposed network can be
reconfigured for any number of EEG channel and artifact classes. Experiments were
done with the proposed model with the goal of maximizing the identification accu-
racy while minimizing the weight parameters and required number of operations.
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Our proposed network achieves 93.14% classification accuracy using EEG dataset
collected by a 64 channel BioSemi ActiveTwo headsets, averaged across 17 patients
and 10 artifact classes. Our hardware architecture is fully parameterized with num-
ber of input channels, filters, depth and data bit-width. The number of processing
engines (PE) in the proposed hardware can vary between 1 to 16 providing differ-
ent latency, throughput, power and energy efficiency measurements. We implement
our custom hardware architecture on Xilinx FPGA (Artix-7) which on average con-
sumes 1.4 mJ to 4.7 mJ dynamic energy with different PE configurations. Energy
consumption is further reduced by 16.7 x implementing on application-specified in-
tegrated circuit at the post layout level in 65-nm CMOS technology. Our FPGA
implementation is 1.7 x to 5.15x higher energy efficient than some previous works.
Moreover, our ASIC implementation is also 8.47x to 25.79x higher energy effi-
cient compared to previous works. We also demonstrated that the proposed network
is reconfigurable to detect artifacts from another EEG dataset collected in our lab
by a 14 channel Emotiv EPOC+ headset and achieved 93.5% accuracy for eye blink
artifact detection.

Keywords

EEG, Artifact, Depthwise Separable CNN, FPGA, ASIC, Flexible Reconfigurable
Hardware.

Introduction

Electroencephalography is a method of recording non-invasive electrical signals of
brain through electrodes. EEG signals can be easily contaminated through noise
originating from line electrical noise, muscle movement or ocular movements.
These distortions in the EEG signals can be referred to as artifacts. These artifacts
can lead to difficulties in extracting underlying neuro information (Iriarte et al[2003};
Nuwer||1988).

Artifacts can overlap the EEG signal in spectral as well as temporal domain
which turns out to be difficult for simple signal processing to identify artifacts (Is-
lam et al|2016). A method involving regression which subtracts the portion of signal
from reference signal was widely used. Problem with this method is that it needs one
or more reference channels. As of now, the independent component analysis tech-
nique (ICA) is one of the most frequently used method for EEG artifact detection
(Jafari et al2017)). The ICA is a denoising technique that involves the whitening of
data and separation of linearly mixed sources (Winkler et al[2011}; [Jung et al|[1998)).
A major drawback of this method is that it is not fully automated and still requires
an expert person to label and tag the EEG artifacts. ICA is computationally inten-
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sive (Jafari et al|[2017) which makes it unsuitable for use in embedded hardware
applications.

Convolution neural networks (CNNs) have been successfully used in computer
vision tasks such as image and audio classification (Paneliya et al[2020; [H.Ren et al
2020, in press; M.Hosseini et al/[2020; |Hosseini and Mohsenin|[2020). Recently, it
is also used in reinforcement learning applications (Shiri et al/2020; [Prakash et al
2020; |Islam et al|2019; |[slam and Raz1|2019)). The advantage of using CNNs in these
tasks is that it doesn’t need hand crafted features from experts, it learns them auto-
matically using raw data. In (Jafari et al|2019;|Zheng et al|2014)) authors have shown
that time series signals from multimodal sensors can be combined in a 2D images
and passed to the convolution layers to learn the features and then passed to Multi-
Layer Perceptron (MLP) to perform final classification. One major disadvantage of
using CNNss is its high memory and computation requirements.

In this chapter, we use depthwise and separable convolution layers to create mem-
ory and computationally efficient CNNs which are used for multiple artifact identi-
fication from continuous multi-channel EEG signal. A scalable low power hardware
is designed for the optimized model and is implemented both on FPGA and with
ASIC post-layout flow.

This chapter makes the following major contributions:

* Propose a scalable depthwise separable CNN based network that can be pro-
grammed for any number of EEG channels and artifacts for identification.

» Evaluate and compare proposed model with various other architectures in terms
of identification accuracy (multi-class), number of parameters, and total number
of computations.

e Perform extensive hyperparameter optimization in terms of number of filters,
shape of the filters and data bit-width quantization to reduce the power consump-
tion and memory requirements without affecting the classification accuracy.

* Propose a custom low power hardware architecture which can be configured with
different number of processing engines in terms of 2" where n is ranging from 0
to 3.

* The flexible hardware architecture is parameterized with number of input chan-
nels, filters, depth and data-width. Also, it can be of different layers and types.

* Implement proposed hardware using Verilog HDL and synthesized, placed, and
routed on low power Xilinx Artix-7-200T FPGA and post layout ASIC in 65-
nm CMOS technology, and provide results, analysis and comparison in terms of
power consumption, latency and resource utilization.

* Experimentally demonstrated the proposed model with the EEG data collected
in our lab by a 14 channel Emotiv headsets

The rest of the chapter is organized as follows: Section presents some related
works. Section provides description of EEG data , artifacts and the information
on experiments performed to collect it. Moreover, it shows visualization of EEG
artifacts as well. Background on different types of convolution layers is given in
Section . Section provides details about the proposed artifact identification archi-
tecture and classification results. Model optimization and quantization techniques
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are given in Section . Hardware architecture design is presented in Section . Sec-
tion provides detailed analysis and results for hardware implementation. Section
provides comparison with existing works. Section presents our experiments with
the Emotiv EPOC+ headset to collect our own dataset and implement our model for
binary classification of eye blink artifact detection. Section concludes the chapter.

Related Work

This section contains a brief description of artifacts that can influence the anal-
ysis and the interpretation of EEG recording. It further deals with existing ways
for artifact identification. EEG monitors the electrical activity of the brain, signals
generated can be used in many applications including seizure detection, and brain-
computer interfaces (BCI) (Chander et al|[2011)(Page et al[2015a). Some of the
electrical activity has rhythmic features while other can be characterized as tran-
sient. The bands of frequency for the rhythmic activity are usually alpha (8 - 12
Hz), beta (12 - 30 Hz), delta (1 - 4 Hz) and theta (4 - 7 Hz) waves. EEG signal have
very low signal to noise ratio. These signals are usually interfered with artifacts
generating from muscle, ocular movements, and power lines.

Artifact is electrical activity with noise which occurs outside and inside of the
brain yet is still recorded by the EEG. Essentially an artifact is not of cerebral origin.
It can be physiological: originating from the patient’s body or extra physiological.
The latter can include activity from some of the equipment in the room, electrode
pop up and cable movement. Some can be read in global channels, while others
can only be found in single channels. Some are recorded as periodic regular events,
while others in contrast are extremely irregular.

In order to detect artifact in EEG signal the use of a straightforward signal pro-
cessing technique is not always the best method for artifact detection. This is mainly
due to the fact that artifacts can coincide with EEG signals in both spectral and tem-
poral domains. The main challenge is that both the existence and the actual type of
artifact will command the selected process of removal. A traditional way of deter-
mining the former and latter is to follow an ICA based procedure as a primary step
(Islam et al||2017b)). The type of artifact at hand will then determine whether time
or frequency domain (or a combination of both) should be used for identification.
In our earlier work in (Jafari et al|[2017), we proposed an artifact detection tech-
nique based on ICA and multi-instance learning classifier. Because of high memory
requirements and complex computation, the execution time takes 8.8 seconds on
ARM Cortex-AS57 processor which is not appropriate for real-time application. In
(Page et all2015a) and (Page et all2015b), authors compared different machine learn-
ing algorithms for designing a reliable and low-power, multi-channel EEG feature
extractor and classifier such as K-nearest neighbor (KNN), support vector machine
(SVM), naive Bayes, and logistic regression. Among all classifiers, logistic regres-
sion has the best average F1 measures of 91%, the smallest area and power footprint,
and lowest latency of 0.0018 ms. In (Chou et al|[2016), authors proposed a hard-
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ware design of automatic muscle artifacts removal system for multi-channel EEG
data using blind source separation (BSS) from canonical correlation analysis (CCA)
known as BSS-CCA. They show that the BSS-CCA result for eye-blinking and bit-
ing is better than automatic artifact removal (AAR) tools. The work in (Bhardwaj
et al|2015) proposes a real-time low-complexity and reliable system design method-
ology to remove blink and muscle artifacts and noise without the need of any extra
electrode. The average value of correlation and regression lie above 80% and 67%,
respectively. Authors in (Sundaram et al|2016)) implemented a moving average and
median filter to remove physiological noise from EEG data signal as part of pre-
processing. The results show that the median filter consumes slightly less power, and
occupies 60% less area, while the moving average filter is 1.2 faster. In (Dutande
et al|2018), author proposed a low pass butterworth filter for removing out-band
components and adaptive LMS noise canceller for removing in-band components
from EEG data signal. In (Mahabub|2018)), author proposed a complete filter which
is a combination of integrator filter and differentiate filter which support detection
of both low and high noises. The total FPGA utilization for complete filter is less
than 1%.

In (Islam et al/[2017a), authors have used feature extraction and traditional ma-
chine learning classifiers such as KNN and SVM to build a fully automated EEG ar-
tifact classifier. This method outperforms the ICA based methods, exhibiting lower
computation and memory requirements. Proposed architecture is also implemented
on embedded ARM Cortex CPU. On average, it consumes 1.5 W power at 1.2 GHz
frequency.

In (Barachant et al|2010), Riemannian geometry is used to propose a framework
for classification in BCI applications. In this approach, the classification task is per-
formed by calculating the covariance matrices of the given input epoch without per-
forming any pre-processing. This algorithm relies on mean computation of covari-
ance matrices which is obtained by mapping the dataset into tangential space, mak-
ing computation in small embedded systems for real time applications. Deep neural
networks require a lot of data by performing data augmentation. The use of deep
neural networks have grown due to their success in image classification problems
(Krizhevsky et al[2012). In (Schetinin and Schult|2004), authors have used feed for-
ward neural network combined with decision tree to detect ocular artifacts in EEG
signal. Authors in (Majidov and Whangbo|2019) overcome the problem mentioned
in (Barachant et all[2010) by using CNN for their classification task. Convolution
neural networks have been also used in (Khatwani et al|2018) for detecting ocular
and muscular related artifacts. One disadvantage of using CNN is its high mem-
ory and computation requirements. Another method which accomplishes desired
results is that of, recurrent neural networks (RNNs). The long short-term memory
(LSTM) approach was proposed in (Wang et al|2018) as a variance of RNN-based
EEG classifier in motor imaginary task. In (Abdelhameed et al|2018)), authors pro-
posed a deep convolutional bidirectional LSTM based classifier for epileptic seizure
detection. However, both RNN and LSTM require memory bandwidth-bound com-
putation which is not hardware friendly and therefore restricts the applicability of
these neural network solutions. LSTM structure comprises four separate linear lay-
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ers per unit to run at and for every time-step sequence. Those linear layers require
multiple memory units which might not be efficient for hardware design. Therefore,
hardware implementation of RNN/LSTM and its variances are not good contender
to be implemented as energy efficient hardware.

Depthwise and separable convolution layers can be used to reduce the weight
parameters. This can lead to increase in efficiency without decreasing performance.
Use of depthwise separable convolution was also demonstrated in the first layer
of Inception-v4 (Szegedy et al|[2017). The use of Xception model on ImageNet
dataset led to a small change in classification performance with large improvement
in computational requirements (Chollet|2017).

Our proposed model presents an energy efficient architecture with lower number
of weight parameters and computations which enables both detection and identifi-
cation of multiple artifact. Use of depthwise and separable convolution layers de-
couples the mapping of cross-channel and spatial correlations, leading to reduction
in number of required parameters and computation.

EEG Artifacts and Visualization

In order to assess and evaluate the accuracy of our model, we used a previously
recorded EEG dataset. The data was collected based on the experiments in which
participants manually performed a series of different ocular or muscular artifacts
(i.e. jaw clenching, eye blinking, etc.). The EEG data was recorded using a 64 chan-
nel BioSemi ActiveTwo system with a sampling rate of 512Hz and compared to the
two mastoids average. Four different channels were used to monitor eye motions by
EOG. EOG behavior was documented in order to validate the EEG instances of eye
blinks and saccades but was not included in the subsequent experiments. The usage
of EEG channels alone allows simple implementation of the model. The data were
down-sampled to 256 Hz using a discrete wavelet transform to reduce the computing
strain and also to extend the analytical frequency spectrum. The data then high-pass
filtered at 1 Hz using a 8 order IIR Butterworth filter. EEGLAB was used to process
the data and ERPLAB was used to filter the data. Participants were required to per-
form a series of noise-inducing body, facial, head or eye movements, which were
gathered as part of a larger study (Lawhern et al|[2012)). The list of movements were
reviewed before starting the experiment so that every patient is familiar with it.

It was up to the participants to determine the precise choreography of each move-
ment and to perform movements which felt more natural to them. Each movement
was performed as a separate set of 20 repetitions. A screen was put in place in order
to remind the participants of the movement they should make. A male voice ini-
tially counted down from 3 at a rate of every 2 seconds followed by a tone every
2 seconds. This procedure was done for each set. The participants would make the
movements in time with the vocal commands. They were advised to perform the
tasks in the first second of the 2 seconds period and to relax in the remaining 1 sec-
onds. Additionally, each participant performed a baseline recording session where
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they were instructed to keep still and look straight at a blank computer screen for
around 8 seconds at the start of every run. EEG data from this baseline session was
used as “clean” (or artifact-free) data. Artifacts considered are clenching jaw (CJ),
move jaw (MJ), blink eyes (BE), move eyes leftwards (EL), move eyes rightwards
(ER), raise eyebrows (RE), rotate head (RH), shrugging shoulders (SS) and rotate
torso (RT). Table|[T] gives a brief description of nine artifacts which were performed
by every patient. Since participants were instructed to conduct the action in a normal
manner, heterogeneity was observed among subjects in the movement performance
latencies. For examples, some participants waited for the audio tone to execute the
operation, resulting in a response time interval of 300400 ms while other partici-
pants sought to anticipate the audio tone, resulting in certain time periods that did
not include an artifact attributable to conducting the operation too early. As a con-
sequence, the particular timestamp timing details for each individual was changed
such that the time-course of the artifact was present in the epoch. Around 100 sam-
ples are generated for each artifact class as well as clean signal. EEG timestamps
of size 64 x 512 is used as input both from artifact and artifact-free signal with
different step size.

Table 1 Description on nine artifacts performed by every patient.

Artifact Code| Artifact Description
101 Clench Jaw
102 Move Jaw Vertically
103 Blink Eyes
104 Move Eyes Leftward
105 Move Eyes Rightward
106 Raise Eyebrows
107 Rotate Head
108 Shrug Shoulders
109 Rotate Torso

Figure [T] shows plot for first 20 of 64 electrodes placed on the scalp to capture
the EEG signals. This can be useful to inspect which electrodes are significant in
capturing the specified artifacts. This plot shows nine artifacts for single patient.
Every artifact generates a different pattern which helps in identifying the specified
artifact. Vertical lines indicate the instant at which event has occurred. There may be
differences in signals before vertical line which may occur due to noise or external
sources. The location of vertical lines are adjusted so that it can correctly capture
data which relates to particular artifact event.

Figure[2(a) shows the position of 64 electrodes used for capturing the EEG data.
Figure[2|b) and Figure[2|c) show the topographical plot for, respectively the artifact
101 (clenching jaw) and artifact 103 (Eye blink). Figure 2|c) clearly shows that the
electrodes placed in the front part of EEG are more significant in identifying ocular
related artifacts.
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(a) 101: Clench Jaw (b) 102: Move Jaw (c) 103: Blink Eyes
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Fig. 1 Visualization of nine artifacts performed by patients. Instructions were given to patients
every two seconds and it was advisable to perform the task in the first second. Vertical line indicates
the start of experiment.
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(a) 64 EEG signal channel
locations (b) 101: Clench Jaw (c) 103: Blink Eyes

SFCl Fez FE2 Fea FE6 FT8
TEEGAG&RAGD
a7 CPS CP3 CP1 Pz (P2 P4 (Pg 1pg
R3 P1 Pz R2 P4
Py P8 5 pg

pg:,PozPezP@APOS PY
ol g 02

R Pz P2

np Ps P P4 P8 g
pgy PO3 Pz PG4 poo
o o ®

12 2

Fig. 2 (a) shows locations of 64 EEG electrodes, (b) and (c) show topographical plot for the artifact
101 (Clenching jaw) and 103 (Blinking eyes), respectively.

Theoretical Background

Traditional Convolution

Figure 3] presents the conventions for the traditional convolution. In traditional con-
volution layer if the input is of size Dy X Dy X M and N is the number of filters
applied to this input of size Dy x Dy x M then output of this layer without zero
padding applied is of size D, x D, x M. If the stride for the convolution is S then
D, is determined by the following equation:

Dy —Dy

D, 3

+1 e
In this layer, the filter convolves over the input by performing element wise multi-
plication and summing all the values. A very important note is that depth of the filter
is always same as depth of the input given to this layer. The computational cost for
traditional convolution layer is M x D7 x DIZ, x N (Howard et al|2017).

Convolution
Df Dp

A\ 4

N

Df Filters Dp
Dk Dk

M M
Dk Dk

Fig. 3 Traditional convolution layer with the input shape of Dy x Dy x M and output shape of
D, xD,xN.
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DepthWise Convolution

—————
Df M M
M Dk DK filters Dp

Df

Dk Dk

Point wise convolution

Dp N
filters
N 1 M 1 M

Dp 1 1

A

Fig. 4 Depthwise separable convolution layer which is a combination of depthwise convolution
and pointwise convolution.

DepthWise Convolution

Figure [ presents the conventions for the depthwise convolution. For every input of
size Dy x Dy x M we have M filters of shape Dy x Dy and depth 1. D x M filters
are used in depthwise convolution where D is the depth multiplier. As every input
channel in depthwise convolution has a separate filter, the overall computational
cost is M x D% X D12, which is M x less than with traditional convolution (Howard!
et al|2017)(Chollet|2017).

Table 2 Number of parameter and required computations equations for different types of convo-
lution layers.

Convolution Layers Parameters No. of Computations
Traditional M x Di x N M x Di x Dy x N
Depthwise M x D} M x Dy x D3

Depthwise Separable|M x D; +M x N|M x Dy, x Di +M x D} x N

Depthwise Separable Convolution

Depthwise Separable convolution is a combination of depthwise and pointwise con-
volution (Kaiser et al|[2017). In depthwise operation, convolution is applied to a
single channel at a time unlike standard CNN’s in which it is done for all the M
channels. So here the filters/kernels will be of size Dy x Dy x 1. Given there are M
channels in the input data, then M such filters are required. Output will be of size
D, x D, x M. A single convolution operation require Dy x D; multiplications. Since
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the filter are slided by D, x D), times across all the M channels. The total number
of computation for one depthwise convolution comes to be M x Df, X D,%.

In point-wise operation, a 1 x 1 convolution is applied on the M channels. So the
filter size for this operation will be 1 x 1 x M. If we use N such filters, the output
size becomes D), x D, X N. A single convolution operation in this requires 1 x M
multiplications. The total number of operations for one pointwise convolution oper-
ation is M x D%, x N. Therefore, total computational cost of one depthwise separable
convolution is M x Df, x D} + M x Df, x N (Howard et al|2017).

Table [2] summarizes the equations for parameters and number of computations
for different convolution layers. Here Dy x Dy is the size of the filter, D, X D, is the
size of the output, M is number the of input channels and N is the number of output
channels.

Proposed Network Architecture and Results

EEG Artifact Identification Model Architecture

Figure [5] shows the architecture of the proposed model. It consist of one traditional
convolution layer, one depthwise convolution layer, one depthwise separable con-
volution layer and one softmax layer that is equivalent in size to the number of class
labels. Average pooling is applied twice, once after depthwise convolution, another
one after depthwise separable convolution. The complete model architecture includ-
ing number of filters, filter shapes, data bit precision level are chosen based on an
extensive hyperparameter optimization process which is discussed in Section .

The first CNN layer operates on the raw EEG data so that it can learn to ex-
tract the necessary features for artifact identification. However, DC offset was re-
moved such that the EEG signals are centered around zero. The EEG epochs of
size 64 x 512 is passed to the first 2-d convolution layer consisting 16 filters of size
64 x 4. This ensures that adequate spatial filter is learned in the first layer. Zero
padding is avoided to avoid large computations. After traditional convolution, a
depthwise convolution is used with filter size of 1x32 and depth multiplier of 1
which means there will be 1 filters associated with each depth. This is followed by
an average pooling layer with pool size of 1x32. A separable convolution is further
used with 1x32 filter size which is again followed by an average pooling layer with
pool size of 1x8. All layers are followed by a rectified linear unit (ReLU) activation
function. Once these convolution operations have been performed, the output from
the last average pooling layer is flattened into a single vector so that a fully con-
nected layer can be added. Only one fully connected layer is employed in the model
which has ten nodes with Softmax activation for 10-class classification application.
A Fully connected layer before the Softmax layer is avoided to reduce the number
of parameters.
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The weights for each of the layers of the network are initialized from a normal
distribution. The network is trained using the Adam optimization method and a
learning rate of 0.001. Categorical cross-entropy is used as the loss function. In total,
the network utilizes 5,546 parameters and 4.69 million operations for processing the
input frame.

64x4. 32 132 16@ix14
y 16@1x509 3 “
512 Convi @!x DepthWise 16@IN4T8 \\ ragePool
o

Input EEG Data Conv2D

Separable

erage  16@IX1  pagen  Output
Conv2D oling 10

Fig. 5 Proposed architecture which uses combination of depth-wise and separable convolution
layers. A total of 5,546 parameters is required for this architecture.
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Fig. 6 Class-wise and average accuracy for proposed model

Classification Analysis and Results

Our model architecture is evaluated for seventeen patients for nine different artifacts.
Our model is trained and tested using intra-patient setting. The model is trained
using 70% of the data, 10% is used for validation, and the remaining 20% is used
for testing. All the ten classes are balanced for classification task.

Figure |6 shows class-wise accuracy of the proposed model. It can be seen that
our proposed model identifies all nine artifacts with average accuracy of 93%. The
accuracy ranges between 87% and 99%. It can be concluded that muscle related
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artifacts such as the shrugging shoulders (108) and rotating torso (109) are more
difficult to identify as compared to other artifacts. From figure[l]it is clearly seen that
the EEG signals for shrugging shoulders has similarities between the both side of
the vertical line so that it’s identification accuracy is the lowest one among all other
artifacts. The artifact with best in-class accuracy for all the models is the raising
eyebrows (106) and rotating head (107) which exhibit 96% accuracy.

Table 3 Comparison of parameters, computations and average accuracy (17 patients and 10 classes
which includes 9 artifacts and 1 plain signal) of different model configurations. All the models
classify 9 different artifacts with test data and training data for the same patient

Accuracy # Computations

Model (%) Parameter (Millions)
CNN (Khatwani et al|2018) | 80.37 24,842 354
EEGNet (Lawhern et al|2018)| 95.30 4,394 135.3
This work 93.14 5,546 4.7

Comparison of Classification Accuracy with Existing Work

We compare our model with the previous works (Lawhern et al|[2012; [Islam et al
2017a}; Khatwani et al |2018; |[Lawhern et al|2018)) in terms of accuracy, number of
parameters, and computation cost. In (Lawhern et al|2012), the auto-regressive (AR)
model for artifact detection can be considered as a baseline model but it achieves
68.42% classification accuracy. Whereas, comparing the results reported in (Islam:
et al|2017a), it can be said that the simple linear machine learning approaches have
less accuracy compared to deep learning methods. The authors in (Islam et al|2017a)
reported that KNN has average classification accuracy of 78.8%, Logistic Regres-
sion (LR) has average classification accuracy 52.6% and Support Vector Machine
(SVM) has 53.3% average accuracy for detecting the artifacts from EEG signals.
The extensive comparative results among the models mentioned in (Khatwani et al
2018 |Lawhern et al2018) and ours to identify EEG artifacts are presented in Table
(] In (Khatwani et al|2018), two convolution layers are followed by two maxpooling
layers to detect the EEG artifacts using the same dataset. We run the same model to
identify multiple EEG artifacts. This model results in the overall average accuracy
80.37% with 24,842 parameters and 35.4 million computations. In (Lawhern et al
2018)), one convolution layer is used with one depthwise and one separable convo-
lution layer. We run the model in (Lawhern et all[2018) to identify multiple EEG
artifacts. This model results in the average accuracy of 95.30% with 4,394 param-
eters and 135.31 millions of computation. The main differences between figure
and figure [5]is the shape of the filters in first layer. After changing shape from hori-
zontal to vertical i.e. 1 X 64 to 64 x 4, the computation in the first layer is decreased
significantly. Our proposed model achieves the overall average accuracy of 93.13%
with 5,546 parameters and 4.69 million computations. Although EEGNet (Lawhern
et al|2018)) outperforms our proposed model in terms of accuracy and model param-



14 Authors Suppressed Due to Excessive Length

eters, our proposed model shows a significant reduction in number of computations,
yielding a more hardware friendly solution. Since we use the EEGNet like model
to identify multiple artifacts, we also presented a layer-wise comparison in Table ]
to show the improvements that our model yields in terms of number of computa-
tions, justifying model design. Based on the results shown in Table [ the number
of computations in each layer is significantly reduce with our proposed model. In
convl layer, EEGNet has 134.21millions computation while our proposed model
has 4.1millions computations. Thus, the computation in that layer is reduced with
the proposed method by 32.18x as compared to EEGNet. In total, our proposed
model reduces the number of computations by a factor of 28.81 as compared to
EEGNet.

Table 4 Comparison of computation in each layer for EEGNet (Lawhern et al|[2018) and the ar-
chitecture of this proposed model.

oy _ Computation Computation Reductioq
in EEGNet (Lawhern et al[2018) | in this work |of computation
Convl 134,217,728 4,169,728 32.18 x
DepthwiseConv2D 1,048,576 489,472 2.14 x
AveragePooling2D 16,384 14,336 1.14 x
SeparableConv2D 32,768 21,504 1.52 x
AveragePooling2D 1,024 256 4.00 x
Output 1,280 320 4.00 x
Total 135,317,760 4,695,616 28.81 x

Model Optimization for Embedded Low-Power Hardware

1x256 16@1x16
Convt B@64x512 @

x1 1x3
DepthWise 16@IxS12  AveragePool
Input EEG Data Convab

512

Fig. 7 Original EEGNet architecture which uses combination of depthwise and separable convo-
lution layers. Total parameters required for this architecture is 4,394.

From the discussion of Section , it can be seen that the network architecture
consists of one traditional convolution layer, one depth-wise convolution layer, one
separable convolution layer, and two average pooling layers. In this section, we ex-
plain the reason for choosing the network architecture and parameters. To deploy
our network at low powered and small IoT and wearable devices, we have done
multiple experiments to optimize the model. Extensive hyperparameter optimiza-
tion has been executed to reduce the memory requirements, hardware complexity,
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and power consumption while maintaining high detection accuracy. In this section,
we will specifically explore the impact of changing network parameters and quanti-
zation on our model accuracy.

Network Parameters Optimization

The number of the filters, the shape of the filters, and the size of the pooling lay-
ers are important hyperparameter which affect the memory requirements and num-
ber of the computations required to finish a classification task. The number of the
computations directly influences on the energy consumption. We experimented with
different configurations of our model including different number of filters (1) for
the first convolution layer and the number of the spatial filters for each temporal
filter(i.e. the depth multiplier (D) of the depth-wise convolution layer). We set the
number of the filters (F7) for the separable layer as F; x D. Table E] shows six dif-
ferent configurations with 8, 16 and 32 filters for the first convolution layer and the
multiplier depth of 1 and 2. Considering optimum number of parameters and number
of computations without compromising the accuracy value much, we got 93.13% of
average accuracy with 16 filters for the first convolution layer and 1 as depth multi-
plier. Figure [§] shows six different sets of configurations where filter height for the
first layer of convolution is kept constant at 64 and values for filter width changes to
4, 8, 16. We experimented with two different sizes of the filters for depthwise and
depthwise separable convolution layers, (1 x 16) and (1 x 32). We kept the number
of the filters for the first convolution layer and depth multiplier fixed as previous
selection. Experimenting with these different sets, we selected Set 2 for our net-
work configuration as it gives the optimum parameters and number of calculations
without compromising the identification accuracy. Table [6] shows the experimental
results for the different configurations mentioned earlier.

Table 5 Impact of number of filters in first convolution layer and depth multiplier on the classifi-
cation accuracy, model parameters and number of computations.

Accurac # Computations
(F1,D) %) Y| Parameters (Miﬁions)
8,1) | 90.30 2,714 2.34
8,2) 91.8 3,498 2.61
16,1) | 93.13 5,546 4.69
(16,2) | 93.46 7,498 5.23
(32,1)| 94.43 11,549 9.40
(32,2) | 94.73 17,034 10.52
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Fig. 8 Six different sets of configurations showing different filter shape shapes for different con-
volution layers and size for average pooling layers

Table 6 Impact of filter sizes for different convolution layers on the classification accuracy, model
parameters and number of computations.

Accurac; # Computation
Sets (%) y Parameters (MilIl)ions)
Set1| 92.08 5,034 4.46
Set2| 93.13 5,546 4.69
Set3| 92.59 9,130 8.57
Set4| 93.37 9,642 8.76
Set5| 92.86 17,322 16.57
Set6| 92.11 17,834 16.79

Model Weights Quantization

Quantizing model weights is a popular method to reduce the model size. Quanti-
zation reduces the complexity of the model by reducing the precision requirements
for the weights. Cache is reused in a more efficient way with the lower precision
weights. Quantization is also power efficient since the low precision data movement
is more efficient than the higher precision data (Krishnamoorthi/2018])). Therefore,
weight quantization with 16 bits and 8 bits is performed on our model. Based on
the results shown in Figure[9]8, the 16 bit precision model has nearly same average
accuracy as the full precision model. However, 8 bit precision model has only 2%
(91.53%) drop in average accuracy from the full precision model. To design our
hardware architecture we have chosen the 8 bit quantized model.
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Fig. 9 Impact of model quantizations on the model accuracy. 16 bit quantized model gives same
accurate results as the full precision model whereas 8 bit quantized model gets 2% average accu-
racy drop from full precision model

Hardware Architecture Design

Figure [I0] shows the block diagram of the hardware design with implementation
details for the proposed architecture. The primary objectives for the hardware ar-
chitecture design are: consume minimal power, occupy small area, meet latency
requirements, require low memory and need to be fully configurable. This design
can be configured of doing all type of convolution layers mentioned in Section by
changing in the state machine and parameters of the design such as input size, fil-
ter size, type of convolution, depth of input and filter, number of filters and size
of softmax can be design according to prerequisites. According to Figure [T0] the
architecture design comprises of one shared filter memory, one shared feature map
memory, convolution block, average pooling block and softmax block which are
explained below.

1. Convolution performs a convolution operation with ReLU activation logic. It
can configure up to 2" processing engines (PEs).

2. Average Pooling block performs average operation in a window

3. SoftMax performs fully-connected layer operations that includes ReLU and soft-
max activation function.

4. Filter Memory and Feature Memory stores the weights and input data of the
model architecture.

The convolution block presented in Figure[I0|is using single entity of each adder,
multiplier, small filter memory, input feature memory, output feature map, multi-
plexer and state machine block. We used the 8-bit data-path in our design and as
per the requirements, we used the larger data-path after multiplication and addition
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Fig. 10 Block diagram of hardware architecture used to implement the proposed model. The hard-
ware architecture includes a top-level state-machine which controls the ConvolutionTop, Average-
Pooling and SoftMax blocks as well as all memory blocks. PE refers to number of convolution
Processing Elements that process in parallel, and n is in the range from O to 3.
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operation. We used tensorflow to train our model offline on a standard machine. We
converted 32-bit floating point values to 8-bit fixed values to increase the compu-
tational efficiency. Floating-point arithmetic is complex in hardware and requires
more resources, execution time and power. EEG data is then passed from the main
feature memory to the convolution and ReL.U activation function through the con-
volution block. The ReLU activation function output is truncated to 8-bit and stored
in the output memory of the output feature and then stored in the main memory
of the feature. This data is then passed to the average pooling containing registers,
adder and divider as input. The results are stored in the main feature memory after
average pooling. Finally, the fully connected one that is used in this work only in
the last layer of the neural network. It consists of one multiplier, one adder, few
registers, one multiplexer, and one SoftMaxOutBuffer memory to store the neurons
of the output. After finishing the computation of the softmax layer, the results are
stored in the main feature memory that overwrites previous outdated intermediate
data.
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Hardware Implementation and Results

FPGA Implementation Results and Analysis

The complete proposed model is implemented on a Xilinx Artix-7 FPGA which in-
cludes convolution, average-pooling and fully-connected layers. We used a Verilog
HDL to describe the hardware architecture.

Figure 1] shows the power consumption breakdown of post-place and route im-
plementation on the FPGA, which is obtained by using vivado power tool. As it can
be seen from the figure, average device block ram power consumption of FPGA is
around 87% of total dynamic power which is significantly larger when compared
to the logic power. However, overall power and energy are 5.2x 3.0x respectively
smaller compared to the previous work (Khatwani et al|2018)).

Table [7] provides the implementation results for 1PE, 2PE, 4PE and 8PE. The
result shows that the minimum amount of energy consumed by 8 PEs at operating
frequency of 21.5 MHz. Figure [12] represents the power consumption, energy and
latency with increasing number of PEs. From Figure [I2] we show that increasing
number of PEs leads to the increase in power consumption and decrease in latency,
which leads to decrease in overall energy consumption.

u Clocks

W Logic

m Signals
DSP

B BRAM

ml/0

Fig. 11 Breakdown of dynamic power consumption of the design implemented on FPGA

ASIC Implementation Results and Analysis

To reduce the overall power consumption, an Application-Specified Integrated
Circuit for proposed architecture is implemented at the post-layout level in 65-nm
CMOS technology with 1.1-V power supply. A standard-cell register-transfer level
(RTL) to Graphic Data System (GDSII) flow using synthesis and automatic place
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Table 7 Implementation results on Xilinx Artix-7 FPGA with different number of PEs.

Config. 1|Config. 2|Config. 3|Config. 4
No. of PEs 1 2 4 8
Frequency (MHz) 37.7 35.2 342 30.7
Latency (ms) 86.7 47.2 25.2 15.1
Dynamic Power (mW) 54 58 75 96
Dynamic Energy (mJ) 4.7 2.7 1.9 1.4
No. of Slices 4210 4997 6438 8412
No. of BRAM 149 165 198 264
No. of DSP 24 28 32 102
100 T 0.4
oy 035+
80 |
0.3
70
— 0.25f —
% 60 E
5 50f 0.2 - 3
: :
o 40 015 w
30|

20 |

0.05 |:| 1
0 0
1248 12438 12 48
Number of PE Number of PE Number of PE

Fig. 12 Implementation results of power, energy and latency with different number of PEs

and route is used. The proposed model including convolution, average-pooling and
fully-connected with activation function is implemented using Verilog HDL to de-
scribe the architecture, synthesized and placed and routed using RTL compiler and
Encounter.

The ASIC layout of the proposed model contains three level of hierarchy as
shown in Figure[T3] The lower level of hierarchy is Convolution block which contain
three memory ImageBuffer, filterBuffer and outputBuffer, and logic for convolution.
The size of ImageBuffer, filterBuffer and outputBuffer are 32K, 1K and 32K bytes
respectively. The next level of hierarchy is ConvolutionTop block which contain 8
Convolution block, 1 data memory size of 256K bytes and state machine logic. As
ARM library can generate maximum 32K bytes size memory, we made 256K bytes
size of data memory using 8 of 32K bytes size memories. The highest level of hierar-
chy is Top module which contains one ConvolutionTop block, one data memory size
of 256K bytes, one filter memory size of 9K bytes, average-pooling block, soft-max
block and state-machine logic for data transfer between each layer. The specified
filter memory is smallest available memory which is sufficient to store 9,194 filter
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Fig. 13 Post-layout view of proposed architecture with 8 PEs ASIC implementation in 65 nm,
TSMC CMOS technology with operating frequency of 100 MHz

values. Because of limitation of arm memory library, we combine 8 of 32K bytes
size memories to create one 256K bytes size data memory.

Table [8] shows the comparison between implementations of proposed hardware
architecture on FPGA and ASIC. As it can be seen from table, ASIC implementa-
tion achieves lowest power and energy consumption which is 3.8 and 16.7x less,
respectively compared to the FPGA implementation.
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Table 8 Comparison of different parameters between FPGA and ASIC at the post-layout level in
65-nm, TSMC CMOS technology

Hardware FPGA | ASIC |Improvement
Technology 28 nm |65 nm -
Voltage (V) 1.0 1.1 -

Frequency (MHz) 30.7 | 100 3.3x
Latency (ms) 15.1 | 4.6 3.3%

Throughput (label/s) | 66.2 |216.2 3.3x
Power at 21 MHz (mW)| 234 | 61.2 3.8x
Energy (mlJ) 47 | 03 16.7x

Comparison with Existing Work

Table [9] presents a comparative results of the proposed hardware implementation
results with existing state-of-the-art implementation with same or related physio-
logical dataset on embedded devices. Authors in (Khatwani et al|2018};|Rashid et al
2020) proposed their work based on the same dataset whereas authors in (Zhang
et al|2015) proposed their work on popular UCF101 - action recognition data set.
When our proposed hardware model is deployed at Xilinx FPGA device with a
fully parallel design and running at 30.7 MHz, it consumes 4.7 mJ energy. Au-
thors in (Khatwani et al|2018)) reported that their CNN implementation consumes
35 mJ energy with the same dataset. Our Depthwise separable CNN shows 7.44 X
improvement from their implementation. Authors in (Rashid et al/[2020) reported
theirs consumed energy as 0.021 mJ which is very lower compared to our imple-
mentation although we are using same dataset. They have used LSTM based neural
network model to binary classify the EEG artifacts which is the reason of their
less consumed energy. However, our Depthwise separable CNN based EEG arti-
fact identification outperforms their LSTM based EEG artifact detection in terms of
energy efficiency by 11.74x which is very promising. As authors in (Zhang et al
20135) presented their CNN hardware architecture on video dataset, it requires more
power and energy compared to our EEG based depthwise separable CNN hardware
architecture. However, as the energy efficiency is most common base to compare
different hardware architectures, our proposed FPGA hardware implementation has
5.87 GOP/s/w which outperforms previous implementations in (Zhang et al|[2015)
in terms of energy efficiency. The ASIC implementation further shows more energy
efficiency with 58.82x highest improvement over the previous implementations.

Experimental Study: Eye Blink Artifact Detection Using Emotiv
EPOC+ Headset

To demonstrate the real time EEG artifact detection with our current model, we
used Emotiv EPOC+ headset. It is high resolution 14-channel EEG system. The
bandwidth for this system is 0.2-45Hz. There are digital notch filters at 50 Hz and
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Table 9 Comparison of this work with previous work implemented on FPGA with Config. 4

(Fan et al[2019) [ (Rashid et a1[2020}[ (Khatwani et al[2018) This Work
A Human Activity| EEG Artifact EEG Artifact . I

Application Recognition Detection Detection EEG Artifact Identification
Platform ‘;‘X“ggoo Artix7 100t Artix7200t | Artix7 200t TSMC 65 nm

Frequency (MHz) 150 52.6 37.4 30.7 100

Latency (ms) 353 1.2 200 15.1 11.1

Power (mW) 36000 109 194 234 61.2

Energy (mJ) 1270 0.021 35 4.7 3.1
Energy Efficiency (GOP/s/W) 1.47 0.5 3.47 5.87 29.41

Fig. 14 Model deployment and eye blink artifact detection experiment with the Emotiv EPOC+
14 channel headset capturing EEG data. Eye blink is performed once every two seconds.

60 Hz. A built-in digital 5th order Sinc filter is also used. Data is collected with
sampling rate of 128Hz. The user was instructed to blink once every two second.
First part of this 2 second windows was extracted and labeled as artifact. Second
part of this window is labeled as artifact-free data. The data was collected in 10
different sessions. Each session consisted of 10 eye blinks. Figure [T4] shows two
second window of EEG data captured. We collected data from 7 different subjects.
We used leave-one-subject-out (LOSO) technique for testing purposes. Our network
was trained on 90% of all the training data captured from 6 different subjects, 10%
was used for validation and remaining one subject data was used for testing.

The EEG epochs of size 14 x 128 is passed to the first 2-d convolution layer con-
sisting 16 filters of size 14 x 4. This ensures that adequate spatial filter is learned
in the first layer. Zero padding is avoided to avoid large computations. After tra-
ditional convolution, a depthwise convolution is used with filter size of 1x32 and
depth multiplier of 1 which means there will be 1 filters associated with each depth.
This is followed by an average pooling layer with pool size of 1x32. A separa-
ble convolution is further used with 1x32 filter size which is again followed by an
average pooling layer with pool size of 1x8. All layers are followed by a rectified
linear unit (ReLU) activation function. Once these convolution operations have been
performed, the output from the last average pooling layer is flattened into a single
vector so that fully connected layer can be added. Only one fully connected layer is
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employed in the model which has 2 nodes with Softmax activation for this binary
classification application. The network was trained using the Adam optimization
method and a learning rate of 0.001. Categorical cross-entropy was used as the loss
function. In this experiment we achieved 93.5% accuracy for detecting eye blink
artifact.

Conclusion

In this chapter, we proposed an convolution neural network model using depthwise
and separable CNN for identification of multiple EEG artifacts with average accu-
racy of 93.13%. Our CNN does not require any manual feature extraction and works
on raw EEG signal for artifact identification. Our proposed network is implemented
on Artix-7 FPGA and ASIC at post-layout level in 65nm CMOS technology. Our
FPGA implementation is 1.7x to 5.15x higher energy efficient than some previous
works. Moreover, our ASIC implementation is also 8.47x to 25.79x higher energy
efficient compared to the previous works. We have also shown that the proposed net-
work can be reconfigured to detect artifacts from another EEG dataset obtained by
a 14-channel Emotiv EPOC+ headset in our lab and achieved an accuracy of 93.5%
for eye blink artifact detection.
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