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Abstract— Tongue Drive System (TDS) is a new assistive, 

unobtrusive, wireless, and wearable device that allows for real 

time tracking of the voluntary tongue motion in the oral space 

for communication, control, and navigation applications. The 

latest TDS prototype appears as a wireless headphone and has 

been tested in human subject trials. In this paper, we propose a 

low power FPGA implementation of the TDS. Implementing the 

computational engine on an IGLOO Nano FPGA reduces the 

volume of data that needs to be wirelessly transmitted per 

command by a factor of 24. As a result, the power consumption 

and size of the device will be significantly reduced. With this 

integration, the whole system can be implemented inside the 

mouth and operate longer with every recharge of the battery. 

iTDS can be used as an augmentative human motor output, like 

hands and fingers, and act like the 3rd arm, where physical 

motion has been hindered by the environment or by the nature 

of the task. Alternatively, by concealing visible motions, iTDS 

can be used for communication and control in stealth 

operations. 

I. INTRODUCTION 

ongue motion as an untapped modality for motor 

function has the potential to serve as a control mechanism 

for the disabled. It can also be an additional resource for 

complex control during high workload situations for 

able-bodied individuals especially in battlefields and military 

missions. It is evident from the motor homunculus that the 

tongue and mouth occupy a considerable area of the motor 

cortex, comparable with that of the hand ‎[1]. The tongue is 

connected to the brain over a shorter distance via the 

hypoglossal nerve, while the hand and fingers are connected 

through the spinal cord, a much longer neuronal extension. 

Considering these anatomical innervations and that the 

tongue’s‎motion‎ in‎ the‎mouth‎ is‎ rapid,‎ intuitive,‎ dexterous, 

and does not require much concentration, the tongue seems to 

be quite appropriate as a control interface. To this end, a few 

tongue-operated assistive technologies (AT), such as the 

Tongue-Touch-Keypad ‎[2], Jouse2 ‎[3] and Integra 

Mouse ‎[4], have been developed. However, these 

technologies are limited by their large size, requirements for 

specific head movement, and potential for causing fatigue.  

 

Tongue Drive System (TDS) developed at GT-BIONICS 

LAB in Georgia Institute of Technology is an unobtrusive, 

minimally invasive, and wireless, tongue-operated AT that 

can potentially substitute some of the hand functions with 

tongue functions. The TDS architecture and performance by 

able-bodied subjects and those with severe physical 

 
 

disabilities (tetraplegia) have been previously evaluated and 

reported ‎[6]-‎[7]. Fig. 1 shows one of the experimental setups 

for testing the concurrent arm and tongue movements and 

TDS function. The major findings of previous studies were: 

(1) the movement speed was slowed with the concurrent 

hand-tongue task for the hand speed, but not for the tongue 

speed; (2) the movement speed of the hand was not slowed 

with the concurrent hand-cognitive task, but the movement 

speed of the tongue was slowed with the concurrent 

tongue-cognitive task; and (3) the accuracy (correctness) of 

goal-directed movements was reduced with the concurrent 

hand-tongue task for both hand and tongue, especially when 

the task was difficult. These findings suggested that the speed 

of hand and tongue movements would be influenced in 

different ways by introducing additional motor control 

modality or cognitive task to individual hand or tongue tasks. 

The tongue control via TDS has the advantage of maintaining 

comparable speeds between independent and concurrent use 

over the hand movement control during the tasks that require 

rapid repetitive goal-directed movements ‎[8]. 

 

So far, most studies on tongue motor abilities have been 

related to natural tongue functions such as respiration, 

speech, and swallowing ‎[8], ‎[9]. Training tongue with simple 

protrusion task was also reported to observe the neural 

plasticity ‎[10]. However, none of them have studied the 

tongue performance in providing voluntary motor control. 

The ability of the TDS to incorporate tongue movements into 

performing tasks allows us to evaluate the efficacy of tongue 

motion as a voluntary motor modality on human performance 

in realistic environments as well as its human factors. 
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Fig. 1. A subject using TDS to perform tongue tasks and tapping a standard 
keyboard with his right index finger to perform finger tasks. He was 

presented‎by‎visual‎cues‎through‎a‎customized‎GUI‎(inset)‎on‎a‎22”‎LCD‎

monitor during the experiment ‎[8]. 



 

 

 

 
 

A TDS prototype is proposed in this paper in the form of an 

intraoral TDS (iTDS), which consists of four 3-D magnetic 

sensors, a processing FPGA, and a wireless control unit ‎[11]. 

TDS detects user’s‎tongue‎movements‎by‎sensing‎the‎changes 

in the magnetic field generated by a small magnetic tracer, the 

size of a lentil, attached‎to‎user’s‎tongue‎using‎adhesives. In 

previous versions of TDS all raw data which has been sensed 

with magnetic sensors was sent to a smartphone where sensor 

signal processing  was performed. This high volume wireless 

data transmission consumes significant amount of power and 

requires a bulky battery for operation. Unlike previous 

versions, the FPGA  performs onboard analysis of the 

magnetic signals and only transmits minimal amount of data 

that is needed to deliver the detected command to the target. 

The FPGA takes magnetic field samples with a determined 

interval between each command and uses new signal 

processing and machine learning algorithms to determine 

movements of tongue and classify them into the appropriate 

commands. Implementing the computational engine on an 

ultra low power FPGA reduces the volume of data to be 

transmitted from 24 to 1 byte per command. As a result, it 

reduces the power consumption in the transmission, resulting 

in longer iTDS operating time with a single charge.  

 

II. PROPOSED FPGA-BASED TDS IMPLEMENTATION 

 

The high-level block diagram of the FPGA design is shown in 

Figure 3 which consists of three blocks, Serial Peripheral 

Interface (SPI), Electromagnetic Fields (EMF) attenuation, 

and a classifier. In the following, details of the design and 

optimization are described. The FPGA should be in charge of 

controlling communication among four sensors and 

processing engine while being  sure that detected command is 

correctly delivered to target device.  

  

 
 

A. Choosing the Right Classifier 

 

Although a considerable number of FPGA chips with large 

capacity can be found in the market on these days, however 

an FPGA with an ultra low power consumption and low area 

which suits for the iTDS purpose is very space limited.   Thus 

the main challenge is to choose the right classifier which has a 

low  misclassification rate while leaving enough space for the 

EMF cancelation and SPI blocks on FPGA. In a previous 

study [12], it is shown that if we divide classification process 

into two stages, the misclassification rate drops by 2%. For 

the two stage classifier, the first stage only  classifies the 

command for  left and right, and in the second stage we 

classify for the final decision.  Among several classifiers that 

have been investigated including Mahalanobis, Diagonal 

Quadratic, Quadratic, KNN city block, KNN cosine, KNN 

correlation and KNN Euclidean, the KNN Euclidean 

classifier had  a relatively low misclassification rate of 7.3% 

It also can fit in our target FPGA, IGLOO Nano AGLN250. 

With the optimized  bit resolution that will be discussed in the 

following, the KNN Euclidean  occupied almost 70% of our 

selected FPGA versus the  Quadratic classifier which  

occupied  almost double the size of an AGLN250. 

 

B. Data path Wordwidth Reduction and Bit Resolution 

Optimization 

 

Accurately presenting the biological signals has profound 

impact on final result, we should have enough number of bits 

to fully represent a biological signal. On the other hand, the 

datapath wordwidth of the processing blocks directly 

determines the required memory capacity, routing 

complexity, circuit area, and critical path delays. Moreover, it 

affects the amount of switching activity on wires and logic 

gates, and thus affecting the power dissipation. Figure 3 

shows the impact of wordwidth bit resolution on the final 

misclassification rate after a two stage KNN classification. 

We start   with a 12-bit input which has the same number of 

bits that we receive from ADC and is the most achievable 

accuracy with the error rate of 7.3%. Then we decreased the 

number of bits, as shown in the figure, the accuracy nearly 

stays the same with up to 9 bit input implementation.   

Similarly, for training data storage in lookup tables, 

arithmetic unit and  a 12-bit training set(of 280 entries)  

requires 20,160 bits storage versus  the same training set with 

11 bits data word has 18,480 bits.  

In the next experiment, assuming 7 bit integer data, the 

number of decimal bits in the EMF cancelation coefficients is 

optimized. Figure 4 shows the impact of the number of 

Fig. 3. Basic block diagram for the FPGA Implementation of the iTDS 

digital signal processing engine. 
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Fig. 2. Military applications of low power FPGA implementation for iTDS. 



 

 

 

decimal bits in EMF cancellation coefficients on final 

misclassification rate. As shown in the figure, using 2 decimal 

bits the error rate increases by 8.9%  versus with 5 bits, the 

error rate is   7.3%  which is similar to  a floating point full 

precision implementation in MATLAB. 

 
Fig. 4. Impact of decreasing the  number of input bits on the misclassification 

rate 

 

 

C. Shared Processing 

 

Solely relying on optimizing the classifier and datapath 

wordwidth does not provide enough space for all components 

to be implemented in the AGLN250 FPGA. Since the EMF 

cancellation unit and KNN classifier are both using an adder 

and a multiplier, with a  well-designed architecture, these two 

resources can be shared by them in order to save space. As a 

result the next important consideration is to choose the right 

multiplier and adder’s‎ input‎size  in a way that they can be 

used for both KNN classifier and EMF cancelation and 

without sacrificing  accuracy. Figure 6 shows a high level 

block diagram of the FPGA design with shared resources. 

The state machine is in charge of issuing all control signals. 

Sensor data  are read  through the SPI interface and stored in 

an FIFO, the SPI also checks sensors’ IDs to guarantee that 

the received data is not corrupted or there is no malfunction in 

the communication. After that the state machine issues 

required signals to carry The output of EMF cancelation is fed 

into the KNN classifier, which calculates the  euclidean 

distance of data and training, finds  and the  the  three shortest 

distance among all, and classifies the command based on the 

majority vote of three labels. . The final vote is transmitted to 

the microcontroller to be sent to the target device. 

 

D. Implementation results 

 

The design is fully placed and routed on IGLOO Nano 

AGLN250 and the implementation results are shown in 

Table. 1. As shown in the table, the total device utilization  

proves the importance of using resources wisely. In order to 

use the space  in the best way and given that   the SPI only 

works in the master mode with predefined operations, instead 

of using an IP core, we used our own simplified code which  

leads to  5% device utilization. Total logic usage is 98% 

percent of  the  AGLN250 FPGA.   

 

Area  

  Used Available % 

Core cells 6036 6144 98 

CLKBUF 1 68 1.5 

 INBUF  2 68 3 

OUTBUF     10 68 15 

Total IO cells 13 68 19 

As mentioned before, the main reason of implementing signal 

processing on FPGA is to make ITDS operate longer with one 

single battery charge. Comparing with previous version, in 

which all raw data needs to be transmitted to another device 

for processing, ITDS with local processor only  transmits 

final vote. The previous version [11] consumes 16.25 mW in 

transmission and ignoring analog parts with a 50 mA/h 

battery  it can operates for 8.6 hours while  the local processor 

with 2.709 mw power consumption (Table 2) and with the 

same battery can operates for 51.7 hours. 

 

Power (mW) 

Static 0.046 

Dynamic 2.663 

Total 2.709 
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Table 1. The post place and route results and  design 

utilization on  the AGLN 250 FPGA. 

Table 2. Static, dynamic and total power consumption on 

AGLN250 with the operating frequency of 14 Mhz 

Fig. 5. Impact of the number of decimal bits in EMF 
cancelation’s‎coefficients‎on‎Misclassification‎rate 

 



 

 

 

 
 

 

 

III. CONCLUSION 

This paper presents a local signal processor that reduces 

conventional  tremendous data communication between ITDS 

and smartphone. 

The processor consists of an SPI interface, the EMF 

cancelation and a KNN Euclidean classifier. For the FPGA 

implementation we used fixed point architecture in order to 

save resources and to find the most suited number of integer 

and decimal bits, some experiments have been carried out to 

find the optimum  architecture with a reasonable error rate 

and appropriate complexity for AGLN250. Implementation 

results show a promising power consumption which means 

we can use a smaller battery instead of the conventional bulky 

battery and make the ITDS more user friendly.  Analyzing 

detected values on a local processor and reduction in power 

consumption helps ITDS to operate for a longer period of 

time with a single battery charge and makes it an operational 

device that can be used as a third hand in the real world.  
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  Power(mw) Percentage of being in 

active  

Net 2.212 81.60% 

Gate 0.153 5.60% 

I/O 0.298 11.00% 

Core Static 0.022 0.80% 

Banks Static 0.025 0.90% 

Table 3. Dynamic power consumption break down on different 

FPGA cores on AGLN250 with operating frequency of 14 Mhz. 
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Fig. 6.‎Top‎level‎block‎diagram‎of‎Sensor‎Signal‎Processing‎engine‎unit‎and‎it’s‎interconnection‎with‎sensors,‎transmitter‎and‎microcontroller   


