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Abstract— With the emergence of COVID-19 pandemic,
new attention has been given to different acoustic bio-markers
of the respiratory disorders. Deep Neural Network (DNN)
has become very popular with the audio classification task
due to its impressive performance for speech detection, audio
event classification etc. This paper presents CoughNet-V2 - a
scalable multimodal DNN framework to detect symptomatic
COVID-19 cough. The framework was designed to be
implemented on point-of-care edge devices to help the
doctors at pre-screening stage for COVID-19 detection. A
crowd-sourced multimodal data resource which contains
subjects’ cough audio along with other relevant medical
information was used to design the CoughNet-V2 framework.
CoughNet-V2 shows multimodal integration of cough audio
along with medical records improves the classification
performance than that of any unimodal frameworks.
Proposed CoughNet-V2 achieved an area-under-curve (AUC)
of 88.9% for the binary classification task of symptomatic
COVID-19 cough detection. Finally, measurement of the
deployment attributes of the CoughNet-V2 model onto
processing components of an NVIDIA TX2 development
board is presented as a proposition to bring the healthcare
system to consumers’ fingertips.

Clinical relevance— CoughNet-V2 will help medical
practitioners to asses whether the patients need intensive
medical help without physically interacting with them.

Index Terms— COVID-19, Cough Sound Classification,
Multimodal Deep Neural Networks, Point-of-Care Edge
Devices.

I. INTRODUCTION

The COVID-19 pandemic has wreaked havoc on people’s
health, as well as their social and economic lives. It damages
a variety of body structures and organs. At the onset of
pandemic, it is important to detect the COVID-19 patients
and separate them from other lungs disease patients to give
them better attention before the medical test confirms their
COVID-19 infection. Most individuals are unconcerned
about their breathing and respiratory health, and they miss
the fact that their lungs are vital organs that can be infected
or damaged. Because the symptoms of respiratory disorders
are usually interchangeable, this might lead to misdiagnosis.
Therefore, developing a diagnostic discriminant is crucial
for identifying a quick and correct diagnosis of respiratory
symptoms and taking the appropriate steps. For the
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treatment of respiratory disorders, it is vital to make an
accurate and timely diagnosis. COVID-19 characterized by
a variety of symptoms including a dry cough, a fever,
exhaustion and dyspnea (shortness of breath) etc. and
correspond significantly with different races, genders, and
age groups at different phases of the disease’s development.
Fever was reported by approximately 70% of COVID-19
verified patients in conjunction with dry cough [1]. In
contrast to the elderly, who are the most affected group,
clinical case studies show that the young population is less
prone to have COVID-19-related symptoms [2].

Coughing is a typical symptom of respiratory problems
[3]. Analyzing the cough sound during treatment can
provide valuable information about the coughing
pathophysiological actions that contribute to specific
cough patterns. [4]. Cough sound changes are thought to
be an important indicator of the severity of a respiratory
infection and the effectiveness of treatment [4].

In the domain of medical research, machine learning
and deep learning are very popular for medical computer
vision and medical image classification tasks [5]-[7]. Deep
Neural Networks also shows promising performance in the
task of audio event and signal classification [8], [9]. Our
previous research has shown that respiratory sounds can
be used to detect a variety of respiratory disorders [10].
Moreover, we have shown with the help of deep learning
algorithms, we could detect cough sounds out of different
other environmental sounds [11]. Recently, multimodal
deep learning gained much attention as the overall model
performance is improved when different modalities of data
is considered [12]-[14].

This paper introduces CoughNet-V2, a scalable and
multimodal DNN model running on point-of-care edge
devices to evaluate patients utilizing passively collected
cough audio, and self-entry information (such as age, gender
and fever). The proposed CoughNet-V2 framework has the
ability to make a significant effect by bringing preventative
healthcare to users’ fingertips and estimating the need for
them to visit clinics and have themselves further evaluated
using more specialized test-kits or facilities. The main
contributions of this work include:

o Analyze the open-sourced COVID-19 cough audio
dataset statistically to justify extracting a sufficiently
balanced dataset out of it.

o Propose CoughNet-V2, a scalable multimodal DNN
on the extracted COVID-19 cough audio dataset in
conjunction with the medical information reported by
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Fig. 1: The high-level overview and the detailed model architecture of
proposed CoughNet-V2. The multimodal inputs of the model are MFCC
2d image of size (101, 40) which is converted from audio recordings with
sampling rate of 44.1 KHz and patients’ self-reported medical records.
Here, Conv2d = 2 dimensional convolutional neural networks, BN = Batch
Normalization, ReLU = Rectified Linear Unit, MP = Max Pooling, and FC
= Fully Connected Layer

the patients.

e Train an unimodal deep convolutional neural network
on the extracted COVID-19 cough audio dataset
without considering the medical information and
compare the unimodal and multimodal DNN approach
in terms of model performance.

o Implement the CoughNet-V2 to the TX2 embedded
system and evaluate its CPU and GPU implementation
characteristics.

II. RELATED WORKS

As diagnosis COVID-19 signature from cough audio has
become an active area of research to artificial intelligence
community, a bunch of unimodal and multimodal
COVID-19 audio dataset have been presented [15]-[20].
Out of them only [17], [18] have been made publicly
available for the researcher community. [16], [20] provides
their dataset upon signing their user agreement. Authors in
[21]-[23] proposed unimodal machine learning and deep
learning based approach to classify whether the cough
sound has COVID-19 signature or not. Authors in [24]-[26]
proposed multimodal machine learning and deep learning
approaches to classify COVID cough audios. However,
authors in [24], [26] had to manually select different
features out of COVID-19 cough sound whereas our
proposed CoughNet-V2 automatically selects features from
the mel frequency cepstral coefficients (MFCCs) derived
from the cough audios. Mel-frequency cepstrum (MFC)
is the short-term power power spectrum representation of
a sound, based on the linear cosine transform of a log
power spectrum on a nonlinear mel-scale of the frequency.
There are MFCC (mel-frequency cepstral coefficients) that
form an MFC. A form of cepstral representation is used to
create these sounds. To have more accurate representation

TABLE I: Details of the network architecture for processing
MFCCs of the cough audio.

Layers [ Description [ Output
Input Layer Audio MFCC Vector 499 x 13
Conv2D Kernels = 16 X (3 x 3) - BN -ReLU 499 x 13 x 16
MaxPooling2D Pool size = (2x2), 20% Dropout 249 x 6 x 16
Conv2D Kernels = 32 x (3 x 3) - BN - ReLU 249 x 6 x 32
MaxPooling2D Pool size = (2x2), 20% Dropout 124 x 3 x 32
Flatten 124 x 3 x 32 11904
Dense Neurons = 64 - ReLU - 20% Dropout 64
Dense Neurons = 32 - ReLU - 20% Dropout 32

of human hearing, the mel-frequency cepstrum is the way to
go, as the frequency bands are evenly spaced on this scale,
which is closer to how our ears actually respond. Authors
in [26] presented similar approach to ours. However, they
have worked on Coswara [18] dataset whereas we have
worked on COUGHVID dataset [27]. To date, COUGHVID
[27] is the largest dataset that has been openly published
which leads to better classification performance. Moreover,
we have shown the implementation of the CoughNet-V2 to
the TX2 embedded system and evaluate its CPU and GPU
implementation characteristics which shows acceptability of
our proposed CoughNet-V2 for point-of-care edge devices.

III. COUGHNET-V2 FRAMEWORK

The high level overview of the proposed CoughNet-V2
framework and the more detailed architecture of the
framework is presented in Figure 1. CoughNet-V2 can
take an audio recordings of the cough and self-reported
medical information from the user. As the input is in
the form of audio recordings, we converted the audio
recordings into MFCC 2D images, where rows correspond
to features from MFCCs and columns correspond to
time (window). The data is then separated into window
frames in order to extract characteristics, as the right
windows are critical for distinguishing between static and
continuous signals. Windowing involves first standardizing
the independent variables and then creating sliding 7T
windows. Then the window frames are forwarded to the
two dimensional CNN layers followed by fully connected
layes. The detailed layer parameters are presented in Table
I. Simultaneously, the medical records vectors are passed by
two fully connected layers having 64 and 32 nodes. Then
the output of the upper network (cough audio processing)
and the lower networks (medical records processing) are
concatenated and then forwarded to two fully connected
layers having 256 and 128 nodes respectively. At the end,
the output for the binary classification is seen in the form
of the probability distribution of the last fully connected
layer with the Softmax activation function. Additionally,
other performance metrics i.e AUC, Fl-score, Precision,
Sensitivity and Specificity were measured. We trained our
model with binary cross-entropy loss and SGD optimizer
with 0.6 as momentum.

For the unimodal training experiment, we passed
the output of the fully connected layer to the binary
classification layer and measured the performance metrics.
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Fig. 2: Statistics of the COUGHVID database that contains both cough audio samples and self reported medical information from 15218 subjects.
Orinially the dataset has 3 class labels but due to absence of original RT-PCR test reports, we considered both Symptomatic and COVID-19 classes as
Symptomatic class. a) Breakdown of each class with respect to 10 age groups, b) Breakdown of each class with respect to gender, c¢) Break-down of
each class with respect to reported fever/muscle pain, d) Break-down of each class with respect to other respiratory conditions

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, CoughNet-V2 is evaluated with in-depth
analysis using COUGHVID [17] datasets for COVID
signature detection in cough sound along with the respective
experimental results.

A. Data Sets

We evaluated CoughNet-V2 for COVID-19 signature
detection in cough sound on the publicly available dataset,
COUGHVID [17]. Although this dataset has more than
25,000 cough audio recordings, only 15,218 subjects’
data contains both cough audio samples and self reported
medical information. Moreover, some participants did not
reported their medical information while uploading their
cough audios. The dataset has some silent audio files which
we excluded based on the cough detection accuracy which
was mentioned in the dataset. Originally the dataset had 3
class labels, Healthy, Symptomatic and COVID-19 but due
to absence of original RT-PCR test reports, we considered
both Symptomatic and Covid-19 classes as Symptomatic
class. After all those considerations, we got total 2527
symptomatic patients’ data and 2663 healthy subjects’
data, total 5190 participants’ data were selected for this
experiments. Then we selected 3 seconds of the time frame
and randomly upsample our dataset to 10,000 audio files
where 5241 number of samples were for healthy class and
4756 number of samples were for symptomatic class. We
divided 10000 data sample into train-test sets with selecting
20% of the original data for test sets (8000 training and 2000
test data).

What motivates us to use this particular dataset for our
multimodal CoughNet-V2 framework is that it contains
some specific information (such as subjects’ age, gender,
previous respiratory conditions, existing fever/muscle pain
etc.) which can be co-related with the corresponding
subjects’ cough audio so that those information can
contribute towards improvement of model performance.
One of our previous study [10] shows inclusion of age
groups as knowledge vector into the respiratory symptoms
classification model can improve the model accuracy upto
5%.

TABLE 1II: CoughNet-V2 model performance metrics across
different modalities for detecting COVID-19 signatures in cough
sounds

CoughNet-V2 Unimodal | Multimodal | Improvement
AUC (%) 83.4 88.9 5.5

F-1 Score (%) 81.1 86.7 5.5

Precision (%) 81.7 86.3 4.6

Sensitivity (%) 82.0 85.6 3.6

Specificity (%) 82.3 85.8 3.5

B. Results

Table II shows five standard evaluation metrics (AUC, F-1
Score, Precision, Specificity, Sensitivity/Recall) to evaluate
the CoughNet-V2 framework on test dataset for multimodal
experiments. We also presented the result without the
related information from the patient, termed it as unimodal
case, and evaluated under similar performance metrics
for unimodal experiments. From comparing the results, it
can be said that CoughNet-V2 significantly improves its
performance for multimodal experiments as combination of
both audio and medical information data complement each
other.

V. COMMERCIAL OFF-THE-SHELF DEVICE
DEPLOYMENT

The CoughNet-V2 is designed to be flexibly deployable
for point-of-care edge devices where the proposed deep
learning models trained on the CoughNet-V2 can be
deployed on various edge processing engines. At least two
hardware-level features are attributed to all DNN models:
model size and number of computations per inference, both
of which are upper-bounded by the platform resources they
deploy on, or by the inference deadline. Both the hardware
resource restrictions and the assessment latency should meet
the application goals when putting all of the framework’s
components together. The trained CoughNet-V2 model
is deployed on two mobile CPUs, including Denver
(dual-core) and ARM-Cortex AS57 (quad-core), along with
an embedded CPU+GPU implementation with varying
frequency settings, after setting the batch-size to 1. The
TX2 development board provides precise on-board power
metering for all of the settings. The implementation is
summarized in Table III, from which we can see the
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TABLE III: Implementation of the CoughNet-V2 model to commercial off-the-shelf devices including a dual-core Denver CPU, a
quad-core ARM AS57 CPU, and a combination of ARM CPU + Pascal GPU from the NVIDIA TX2 board.

Confi " CPU Freq. | GPU Freq. | Power | Latency | Performance | Energy Energy Eff

onhguration (MHz) (MHz) (mW) (S) (GFLOP/S) 1) (GFLOPS/W)
Denver CPU 345 - 763 13.0 0.005 9.91 0.005
v 2035 - 2753 0.8 0.092 2.20 0.033
345 - 1056 4.6 0.015 4.85 0.014
ARM AST CPU | —533 - 372 |06 0.123 2.08 0.035
TX2 CPU+GPU 2035 1300.5 8392 0.1 0.742 0.88 0.083

least power dissipating implementation (Denver with a low [8] S. Hershey et al, “Cnn architectures for large-scale audio

frequency) takes 13 seconds to classify one frame, whereas
the most energy-efficient implementation (CPU+GPU)
dissipates approximately 11x more power to classify the
same frame in 0.1 seconds.

VI. CONCLUSIONS

We presented CoughNet-V2, a scalable multimodal DNN
framework that employs as much correlated information as
a dataset provides in an attempt to exploit deep learning
algorithms to detect the signature of COVID-19 into cough
sounds. We have showed that by combining both auditory
and supplementary information for a selection of reasonably
balanced dataset out of a publicly released COUGHVID
database, the detection AUC of the trained model increases
by 5.5%. Finally, we test our CoughNet-V2 model on a
dual-core Denver CPU, a quad-core ARM Cortex A57 CPU,
and a heterogeneous CPU+GPU implementation from the
NVIDIA TX2 development board to see how they perform
when deployed to a point-of-care edge device.
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