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Abstract—Artificial Intelligence (AI) and Deep Neural Net-
works (DNNs) have attracted attention as a solution within
autonomous systems fields as they enable applications such as vi-
sual perception and navigation. Although cloud-based approaches
have already been highly addressed, there is a growing interest
in using both AI and DNNs on the edge as this allows for
lower latency and avoids the potential security concerns of
transmitting data to a remote server. However, deploying DNNs
on edge devices is challenging due to the limited computational
power available, as well as energy efficiency being of the
utmost importance. In this work, we introduce an approach
named E2EdgeAI for Energy-Efficient Edge computing that takes
advantage of AI for autonomous tiny drones. This approach
optimizes the energy efficiency of DNNs by considering the effects
of memory access and core utilization on the energy consumption
of tiny UAVs. To perform the experiment, we used a tiny drone
named Crazyflie with the AI-deck expansion, which includes
an octa-core RISC-V processor. The experimental results show
the proposed approach reduces the model size by up to 14.4x,
improves energy per inference by 78%, and increases energy
efficiency by 5.6x. A recorded video for the proposed approach
can be found here: Video.

Index Terms—Edge Computing, Autonomous Systems, Obsta-
cle Avoidance, Drone Navigation.

I. INTRODUCTION AND RELATED WORK

Nowadays, edge devices such as tiny Unmanned Aerial Ve-
hicles (UAVs) have been utilized in many indoor applications
such as search and rescue, gas leak localization, and real-time
monitoring, which can be too dangerous or time-consuming for
humans to perform [1], [2], [3]. Their small sizes and ability
to be equipped with various sensors increase the potential
for using tiny UAVs in these applications, as tiny UAVs are
safe to operate near humans and are able to access spaces
humans cannot easily reach. Additionally, the aforementioned
capability to have various sensors allows for easier navigation
and accomplishing of mission objectives [4].

To make tiny UAVs smart and autonomous, Deep Neural
Networks (DNNs) [2], [3], [5], or Reinforcement Learn-
ing (RL) [6], [7], [8], [9], [10] can be deployed to these
tiny drones. DNNs help to process claimed data by the
camera and other sensors of these drones in order to nav-
igate autonomously and complete a task. However, DNNs
are extremely power consuming and require intense com-

Fig. 1: A tiny UAV called Crazyflie with an AI-deck expansion. The AI-deck
includes a GAP8 processor which has eight RISC-V cores able to process in
parallel.

putational resources due to the high number of parameters
and computations [11]. To deal with these challenges, cloud
computing and streaming data between drones and the cloud
are proposed as a solution. Although cloud computing brings
massive computational capacity, the amount of data that can
be sent to the cloud is limited due to the bandwidth. Moreover,
security concerns are another potential challenge for such
approaches. Therefore, cloud computing is not suitable for
real-time, low-latency, or privacy-sensitive applications due
to communication latency and potential security concerns.
Fortunately, recent works have shown that edge computing
supports running DNN models onboard while still meeting
these latency and privacy constraints [12], [13].

The main idea of edge computing is to process the claimed
data by edge devices at the edge of the network in order to
reduce data transferring and improve energy efficiency [11],
[12], [13], [14], [15], [16]. While edge computing brings
benefits such as lower communication latency, edge-based
DNN deployment is still challenging due to the limitations
on power consumption and available resources to perform the
processing on the edge. Therefore, it is important to optimize
DNNs for latency-aware energy-efficient deployment on the
edge devices such as downsampling images [17], [18] and

https://youtu.be/YxJmD-eWKE4


DNN’s sparsity [19]. This work particularly addresses state-
of-the-art vision-based DNN models and optimizes them for
energy-efficient edge computing.

To take advantage of UAVs in various applications to
complete missions, a preliminary problem is autonomous
drone navigation. Therefore, in this work, we target drone
navigation and take advantage of DNN models and edge
computing. We propose an approach named E2EdgeAI which
delivers autonomous navigation for drones while still meeting
latency and energy efficiency constraints. In summary, the
main contributions of this article are:

• Discussing cloud computing challenges and bottlenecks
for real-time decision-making in autonomous drone nav-
igation applications.

• Vision-based DNN model optimization to reduce the
model size and computation complexity for energy-
efficient edge computing.

• End-to-end energy-efficient onboard processing and edge
computing while meeting latency constraints.

• Analysing power consumption and latency in regards
to DNN deployment on resource-constrained devices,
memory access, and core usage.

• The hardware is optimally configured for implementation
with respect to latency, throughput, power consumption,
and energy efficiency.

To evaluate our approach, we deploy optimized models
on an edge device named Crazyflie [5] which is shown
in Figure 1. The experimental results show that E2EdgeAI
reduces latency by 4x and improves energy efficiency by 5.6x
in comparison with the state-of-the-art work.

II. PROBLEM DEFINITION AND MOTIVATION

This section defines the problem statement that is discussed
in this work. Then, it shows the effectiveness of edge com-
puting with an illustration example.

A. Problem Definition

This work deals with latency and energy efficiency in
autonomous systems. The proposed approach tries to reduce
latency by reducing the model size and taking advantage of
edge computing. To achieve this, it optimizes the model for
memory usage to improve both energy efficiency and model
performance. The problem can be formulated as follows:

Inputs: Given:

• The state-of-the-art scalable DNN models.
• The multi-core embedded system which runs DNN mod-

els in parallel.
• Captured images from an environment by the edge device.

Outputs: Determining a tiny DNN model which has been
optimized w.r.t the constraints.

Constraints: Latency, privacy, and energy efficiency are
represented as the main constraints.

Objective: The main objective of this work is latency and
energy improvement while using edge computing.
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Fig. 2: An example of cloud-based computing and edge computing for
drone navigation and obstacle avoidance. (a) The cloud computing approach
performs the inference phase in the cloud. The inputs and outputs of the
model are sent and received by the drone, respectively. Connection latency and
bandwidth as well as security concerns are the two most important challenges
in this approach. (b) Edge computing places the model on the edge device,
and there are no communication speed or security concerns.

Fig. 3: Cloud-based experimental latency measurements. In this experiment,
the DNN model is implemented on a laptop as a cloud and a flying drone
sends captured images to the cloud and gets the command.

B. Illustration Example

Figure 2 (a) shows a system overview of cloud-based
approaches. Claimed data by drones (images in this example)
stream to a laptop through WiFi. DNNs are deployed on a
laptop near the drone and the laptop will receive the data,
perform processing, and send the result back to the drone.
Communication latency in cloud-based approaches increases
by increasing the distance between a drone and the WiFi
network, and eventually, the drone will be disconnected from
the cloud. Figure 3 shows experimental results of measur-
ing computation and communication latency of the inference
phase of the cloud-based approach. This latency reaches up
to 400 ms after 35 m and there is no connection between the
drone and the cloud for distances higher than 35 m. Due to
these challenges, edge computing, Figure 2 (b), is proposed
as a safer and more reliable approach. In this approach, DNN
models have deployed onboard the drone.

III. PROPOSED APPROACH: E2EDGEAI

This section presents the proposed approach, E2EdgeAI,
that optimizes a DNN model for energy-efficient edge comput-
ing. First, it introduces the model architecture and quantization
approaches. Then, it discusses how memory access and core
usage can affect onboard model latency and energy efficiency.
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Fig. 4: The proposed approach for edge computing, E2EdgeAI: (a) optimize a DNN model, (b) model deployment on the edge and analysis of memory access
and core utilization [20], [5], [21], and (c) onboard autonomous navigation.

A. Vision-Based DNNs Model Optimization

Application & Dataset. In this work, we targeted au-
tonomous tiny-UAV navigation. To do this, we needed to
train a model that enables a drone to avoid collision during
flight. We applied state-of-the-art DNNs to train a model
which can predict the probability of collision. Moreover, it
outputs a proper steering angle to avoid obstacles while the
drone is flying autonomously based on a single view grayscale
camera. The drone receives two outputs from the model
and generates proper navigation output accordingly. If the
probability of collision generated by the first output is higher
than a threshold, the drone will change its direction and steer
based on the angle generated by the second output.

Two datasets are used to train a model for collision avoid-
ance and steering from raw grayscale image inputs; (1) a
dataset [22] of about 32K images is annotated with 0/1 labels
as collision/no collision, respectively, (2) a dataset of Udacity’s
projects [23] contains 70K images, captured while driving a
car by left, center, and right view cameras.

Model Architecture. Since edge devices such as IoT and
embedded systems have limited computational power, edge
computing demands smaller model sizes with a reduced num-
ber of operations. Therefore, we have proposed DNNs that
can be scaled with respect to the model size and number
of computations to meet the application and hardware imple-
mentation requirements. In this work, we trained our DNN
model with four scalable models including MobileNet [25] and
ResNet [26]. Similar to our proposed work in [3], we consid-
ered four different configurations and extracted accuracy, size,
and the number of computations. MobileNet complexity can be
modified by assigning different values to its width multiplier;
0.25, 0.5, 0.75, 1. For ResNet, we used a customized Resnet

and serialized one, two, three, and four residual blocks se-
quentially. Figure 4 (a) illustrates the customized ResNet with
one residual block. Similar to our previous work for timeseries
audio input [27] and image input [28] classification and also
research works in [17], [18], we consider different input image
sizes as a factor for reducing the model size and the number
of operations.

Edge Model. As an example of a simple point of difference
that can have dramatic consequences, most neural networks
are designed and trained using what are known as Floating
Point (FP) numbers, which are how computers represent the set
of real numbers. Due to FP numbers being incredibly common
in modern software, most desktop and server processors have
been optimized for FP arithmetic to the point that they can
typically perform these operations at the same speed or faster
than integer arithmetic operations. However, in order to save
on size, weight, and power (SWaP) constraints, it is very com-
mon for embedded processors to lack an FP unit, instead only
supporting integer arithmetic. Even if they do contain an FP
unit, these processors are typically still slower at performing
FP arithmetic than they are at performing integer arithmetic.
Thus, in order to execute neural networks at any reasonable
level of performance on embedded devices, one needs to
convert these neural networks to only use integers rather
than FP numbers in a process known as quantization. There
are two common approaches for quantization: Post Training
Quantization (PTQ) and Quantization Aware Training (QAT).
We applied PTQ to the optimized model with the help of
TensorFlow Lite to convert the model from a 32-bit FP to an 8-
bit quantized model. In this way, not only is this model suitable
for edge implementation but also has a smaller storage size and
less memory usage. In the next section, we analyze energy
efficiency and inference latency for the optimized models.



TABLE I: Average download speed, upload speed, and power model parameters of wireless networks [3], [24]

Download/Upload Speed Power Model

Network Type Download Speed (Mbps) Upload Speed (Mbps) αu (mW/Mbps) αd (mW/Mbps) β (mW)
WiFi 55 19 283 137 133

Fig. 5: Training vision-based obstacle detection DNN model with
MobileNetV1[25] and ResNet [5], [22], [26] architectures for four different
scale sizes with image input size 324x244. ResNet and MobilNet model
sizes are optimized at about 14x and 12x in comparison with the baseline,
respectively. [3]

B. Edge Computing Resource Optimization

Latency and Power Analysis. Obstacle detection for col-
lision avoidance plays a key role in autonomous drone nav-
igation. Vision-based DNN models are a promising solution
in this area. However, the communication latency, bandwidth,
and power consumption are significant parameters in real-
time decision making for drone navigation applications. For
obtaining these parameters, we refer to standard download and
upload speed in average and communication power consump-
tion for wireless networks [3], [24]. With the help of Table I
parameters, the latency and power consumption through WiFi
can be theoretically based on the equation 1:

puplink = αu × upload speed+ β,

pdownlink = αd × download speed+ β
(1)

where upload speed and puplink are the average speed and
power consumption from the drone transferring data to the
cloud through WiFi. download speed and pdownlink represent
the download speed and power consumption, respectively. αu,
αd and β factors determine power consumption in mW/Mbps
of data transfer. In order to reduce latency and power con-
sumption, we trained DNN models which are optimized for
size and the number of computations. Therefore, they can be
applied to resource-constrained devices such as tiny drones.

Hardware Architecture. Figure 4 illustrates how
E2EdgeAI deploy a DNN models on a resource-constrained
processor named GAP8 [20], [5], [21]. Figure 4 (b) and (c)
shows that Crazyflie consists of a GAP8 processor. It has a
RISC-V based PULP platform with two computes domains:
(1) a Fabric Controller (FC) for controlling tasks and 512KB
L2 memory and (2) a cluster domain with 8 cores for parallel

Fig. 6: ResNet with a scale size of 0.25 is optimized in terms of input size. In
the ResNet model, input size 129x97 was found to have acceptable accuracy
while reducing the model size by about 3x.

computation of highly demanding workloads and 64KB
directly accessible L1 memory. In this work, we utilized
the GAPFlow toolchain, which includes the 2 programs
known as NNTOOL and AutoTiler. NNTOOL is responsible
for performing adjustments to the DNN architecture, and
converting it into a format AutoTiler can use, as well as
converting the weights into a format that can be flashed
to the GAP8. AutoTiler is responsible for algorithmically
determining the best possible memory layout for the DNN,
as well as converting the model operations into C code
that can be compiled for the GAP8. While we were able
to automate most of this process, certain DNNs will often
require some level of tinkering in order to be converted
correctly. For instance, adjusting the maximum stack sizes
for the FC and cluster cores, as some networks allocate more
data on the stack than others. Similarly, the heap space will
often need to be adjusted for a specific DNN, by default
AutoTiler will attempt to allocate the entire system’s L1 and
L2 memory for use in the DNN, however, this will inevitably
result in heap overflows, data structures being corrupted in
memory, and a clobbered stack, as this data is all stored in
memory that would inevitably get overwritten during neural
network execution. Additionally, the RTOS used by the GAP8
processor will frequently make its own heap allocations before
the DNN starts up, leaving less space than expected by the
DNN. We analyzed how GAP Flow and memory allocation
can affect power consummation and latency on different
DNN models and presented an energy-efficient model for
edge computing drone navigation. In the next section, we
showed model optimization results and analyzed them on the
edge DNN implementation. Moreover, we discussed latency
and energy efficiency improvement.
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Fig. 7: (a) GAP8 processor on the AI-deck attached to the Crazyflie with
power measurement setup. INA219 and Arduino measure the GAP8 power
consumption. [6] (b) Crazyflie running the baseline model in action for
obstacle detection and avoidance.

TABLE II: Hardware implementation results that compare E2EdgeAI with
the presented work in [3]. The experiment was run with the newest NINA
firmware [29] to deploy the model on the GAP8 processor and to extract
latency and power consumption.

Metric/Approach [Navardi’22] [3] E2EdgeAI
Inference Latency (ms) 40 10

Throughput (Inference/Sec) 25 100
Power Consumption (mW) 470 400

Performance (GOPS) 1 1.3
Energy Efficiency (GOPS/W) 55 323

Energy/Inference (mJ) 18.8 4

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Software Experimental Results

This section shows the result of training an obstacle de-
tection and steering angle DNN model. We used the ResNet
and MobileNet architectures with four different scaled model
sizes and six different image input sizes as we discussed in
section III-A. Figure 5 illustrates that by decreasing the model
size of both architectures, the number of computations and
parameters is decreased. However, as an optimized ResNet
model has the lowest computation complexity, being 14x lower
than the baseline. Therefore, we chose this model and analyzed
the effect of changing the input size on the model’s accuracy.
Figure 6 shows a ResNet model with one residual block and an
image input size of 129x97 that has about 3x lower complexity
while the accuracy is approximately the same as the baseline,
being equal to 92%. We applied PTQ on the ResNet model
with different image input sizes to analyze the latency and
energy efficiency of the GAP8 processor.

B. GAP8 Edge-Device Implementation Results and Analysis

In order to evaluate the E2EdgeAI approach, we deployed
the trained model on the GAP8 processor. Moreover, we
compare the energy efficiency and latency of E2EdgeAI and a
state-of-the-art work proposed in [3]. To do a fair comparison,
we repeated the measurements for the edge model proposed
in [3] to have results for the same configurations. Figure 7 (a)
shows the power measurement setup that we used in these
papers [3], [6]. Latency, power consumption, and energy
efficiency of the proposed E2EdgeAI model are reported in

Fig. 8: Average power consumption and active memory allocation during the
inference phase of the ResNet model with different input image sizes. The
E2EdgeAI model is compared with the proposed work in [3]
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Fig. 9: The VCD trace [30] during the inference phase of the ResNet model
with two different image input sizes: (a) 324x244, (b) 129x97.

Table II. The results show E2EdgeAI is about 4x faster and
5.8x more energy-efficient than the presented model in [3].
Figure 8 analyzes the effect of input size on the active memory
allocation and energy consumption during the inference phase.
In order to measure the active memory allocation, we extracted
the maximum amount of memory used at any given time
during the inference. While the result for [3] shows that it
used both L1 and L2 memory as the active memory allocation
size is higher than L1 memory size (64Kb), E2EdgeAI could
successfully compress the model into 56 Kb which can be
fitted on the local memory (L1) of the GAP8 processor.
Therefore, E2EdgeAI leads to lower energy consumption equal
to 4mJ. Figure 7 (b) shows running baseline model in action
for obstacle detection and avoidance.

In order to show how the energy efficiency would vary with
different levels of DNN complexities, we extract the VCD
trace [30]. Figure 9 illustrates VCD trace includes the Cluster-
DMA (CDMA), Micro-DMA (MDMA), and core utilization
for the base model of ResNet (324x244) and the optimized
E2EdgeAI model (129x97). The CDMA engine is responsible
for moving data between L1 and L2 memory, L1 memory
being an application-managed scratchpad. The MDMA is
responsible for transferring data between the different periph-
erals attached to the GAP8. For DNNs, it is used to move



weights from what is known as L3 memory, essentially extra
RAM attached to the HyperBus. This RAM is much slower
and more power-intensive than the L1/L2 memory but stores
significantly more data [6]. In Figure 9 (a) both MDMA and
CDMA units are active nearly the entire inference phase, thus
causing the processor to have to waste cycles waiting for data.
However, results for the optimized model, Figure 9 (b), are
much less frequent for both DMA units. Also, near the end
of the inference, the MDMA unit stops being used entirely,
while the CDMA unit is accessed much less frequently which
leads to lower energy consumption.

V. CONCLUSION

In this paper, we proposed an approach named E2EdgeAI
for energy-efficient edge computing in tiny drones which
utilized Deep Neural Networks (DNNs) to navigate au-
tonomously. We evaluated the throughput and accuracy of
the proposed model, E2EdgeAI. Moreover, we implemented
this model on a drone with Artificial Intelligence (AI) ca-
pabilities called Crazyflie. Then, we extracted latency, power
consumption, energy per inference, performance, and energy
efficiency for the proposed approach and state-of-the-art work
to compare. Experimental results showed 14.4x less model
complexity, 5.6x more energy efficiency, and 78% energy per
inference improvement.
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