
An Optimization Framework for Efficient
Vision-Based Autonomous Drone Navigation
Mozhgan Navardi†, Aidin Shiri†, Edward Humes† Nicholas R. Waytowich‡, Tinoosh Mohsenin†
†Department of Computer Science & Electrical Engineering, University of Maryland Baltimore County

‡US Army Research Laboratory

Abstract—Fully autonomous drones are a new emerging field
that has enabled many applications such as gas source leakage
localization, wild-fire detection, smart agriculture, and search
and rescue missions in unknown limited communication and
GPS denied environments. Artificial intelligence and deep Neural
Networks (NN) have enabled applications such as visual per-
ception and navigation which can be deployed to make drones
smarter and more efficient. However, deploying such techniques
on tiny drones is extremely challenging due to the limited
computational resources and power envelope of edge devices.
To achieve this goal, this paper proposes an efficient end-to-end
optimization method for deploying deep NN models for vision-
based autonomous drone navigation applications, such as obstacle
avoidance and steering task. This paper formulates two different
methods for implementing the NN inference phase onto tiny
drones and analyzing the implementation results for each case: 1)
a Cloud-IoT implementation and 2) Onboard Processing. Several
models are trained with state-of-the-art scalable NN architectures
and the most efficient cases in terms of computation complexity
and accuracy are selected for implementation on a cloud server
and several edge devices. By designing hardware-friendly NN
models and optimal configuration of the implementation plat-
forms, we were able to reach up to 97% accuracy, speed up
the computation 2.3x, have 22x less complexity, and 53% energy
reduction. Also, we achieve up to 25 fps on the GAP8 processor,
which is enough for real-time drone navigation requirements,
even when the model is running on a small IoT device.

Index Terms—Autonomous Systems, Obstacle Avoidance,
Drone Navigation

I. INTRODUCTION AND RELATED WORKS

Autonomous nano-scale Unmanned Aerial Vehicles (UAVs)
are emerging technologies that have enabled countless indoor
and outdoor applications like gas leakage source localiza-
tion [1]. These devices with a form factor of a few centimeters
typically weigh less than a few grams. Also, a tiny processor
with power enveloping less than a few Watts collects informa-
tion from its onboard sensors and either performs application
computations locally or transmits the essential information
to a centralized server to do the computation [2]. However,
implementing fundamental perception tasks like robotic vision
requires extremely careful design consideration due to their
intensive computation, while transferring data back and forth
to a server may be hard to accomplish due to bandwidth
limitations, security concerns, or power consumption.

Recently, Neural Network (NN) based robotic perception
models for autonomous drone navigation and obstacle avoid-
ance have demonstrated the best accuracy and have shown
better generalizability in more complex environments [3].

It also has been demonstrated that NN-based models are
more resilient to permanent and transient faults in naviga-
tional systems [4]. But usually, this improvement comes with
the cost of being the main computational bottleneck of the
system [5]. Therefore, the task of selecting a proper NN
architecture for the perception task and considering multi-
objective optimization problems with parameters such as nn
accuracy. model size and number of computations is of great
importance. Things get even more complicated when taking
application specific and hardware platform constraints such
as inference speed, processor power envelop, and memory
size into account. Different hardware platforms have different
computational resources and power constraints. Therefore, a
desirable NN model should be scalable to scale up/down the
parameters and computations, so that it could be easily tailored
based on the target implementation platform capabilities to
meet the user’s required constraints.

In this work, we propose an optimization framework for
implementing scalable state-of-the-art NN models based on
the hardware platform capabilities for autonomous drone nav-
igation applications like obstacle avoidance and steering.

This paper makes the following major contributions:
• Efficient end-to-end method for deploying deep NNs for

obstacle avoidance and steering tasks for autonomous
drones which can be deployed in real world scenarios.

• Formulating a method for implementing NN inference for
autonomous drones and proposing a detailed analysis for
1) Cloud-IoT and 2) Onboard Edge implementations.

• Extensive experiments with several state-of-the-art net-
work architectures and implementation of the most effi-
cient models on a desktop server, embedded CPU, GPU,
and IoT platform.

II. PROPOSED FRAMEWORK

This work proposes a framework that provides a method for
generating optimized models for autonomous drone navigation
for implementation on the cloud and edge. The efficiency
of NN implementation is often reported with the number
of operations per second per Watt (FLOPS/W or GOPS/W).
However, for time and energy sensitive applications such as
autonomous drone navigation, several factors such as accuracy,
throughput, latency, power consumption, and energy efficiency
must be considered for providing a comprehensive big picture
to perform the trade-offs between different implementation
techniques. This work investigates the process of training

Cloud Server Edge Device

Memory: 32GB
Computation: ≈1015 FLOPS

Memory: 8GB
Computation: ≈1012 FLOPS

Memory: 4GB
Computation: ≈109 FLOPS

Memory: 4MB
Computation: ≈106 FLOPS

NVidia Tesla Embedded AI Accelerator:
NVidia TX2 GPU

Embedded Platform:
Raspberry Pi

IoT Devices
GAP8 low power
Parallel Processor

Less Resources

Sensing:
Camera
Radar
IMU

...

Perception:
AI/ML Inference

Information Extraction
Object Detection

...

Decision:
Action Prediction

Obstacle Avoidance
Steering

...

Proceed/Steer

Fig. 1: A high level diagram of proposed framework: scalabe neural networks
are trained for autonomous drone obstacle avoidance and steering task

several state-of-the-art scalable NN models and their efficient
deployment for obstacle avoidance and steering task, to struc-
ture an optimization framework that takes different hardware
implementation metrics and constraints into account.

A. Application
One of the main deployment platforms of NN-based au-

tonomous drone navigation systems is tiny drones. They
usually have limited processing power and capabilities. We
used several state-of-the-art deep NNs to train a model which
can predict the probability of collision. Moreover, it outputs
a proper steering angle to avoid obstacles while the drone
is flying autonomously based on a single view grayscale
camera. The drone receives two outputs from the model
and generates proper navigation output accordingly. If the
probability of collision generated by the first output is higher
than a threshold, the drone will change its direction and steer
based on the angle generated by the second output.

B. Scalable Neural Network Models
Big network size and a large number of computations limit

the capability of model inference for the real-time autonomous
navigation application. Edge devices such as embedded and
IoT processors have limited computation resources and server
implementation is usually constrained by bandwidth limita-
tions. Several recent works have proposed NNs that can be
scaled with respect to the model size and computations to meet
the application and hardware implementation requirements. In
this work, we trained our NN model with five scalable models
including: MobileNet V1-3 [7], [8], [9], EfficientNet [10], and
ResNet [11]. We considered four different configurations for
each model and trained models to measure their accuracy, size,
and the number of computations. MobileNet complexity can be
modified by assigning different values to its width multiplier
(0.25, 0.5, 0.75, 1). For the EfficientNet, we experimented
with the B0-B3 configuration. Also, we used the ResNet by
serializing 1, 2, 3, and 4 residual blocks sequentially.

Algorithm 1 Latency and Energy Optimization Pseudo-Algorithm
Input: αu, αd, β, upload speed, download speed, v, x,
edge power budget.
Output: ttotal, ptotal.

1: ▷ Train phase
2: mcloud, medge ← train different models()
3: medge ← 8-bit ptq(medge)
4: ▷ Inference phase
5: tcloud, tedge = computation latency(medge, mcloud)
6: pcloud, pedge = computation power(medge, mcloud)
7: puplink, tupload ←

upload power latency(αd, αu, β, upload speed)
8: pdownlink, tdownload ←

download power latency(αd, αu, β, download speed)
9: tlimit ← v

x
10: if tlimit > tedge && edge power budget > pedge then
11: c← 0, e← 1 ▷ Do computations on the edge
12: else if tlimit > tcloud + tupload + tdownload then
13: c← 1, e← 0 ▷ Do computations on the cloud
14: else
15: return failed
16: end if
17: tcomputation ← c× tcloud + e× tedge
18: tcommunication ← c× (tupload + tdownload)
19: ttotal ← tcomputation + tcommunication

20: pcomputation ← c× pcloud + e× pedge
21: pcommunication ← c× (puplink + pdownlink)
22: ptotal ← pcomputation + pcommunication

23: return ttotal, ptotal

C. Dataset

Two datasets are used to train a model for obstacle avoid-
ance and steering from raw grayscale image inputs. Firstly, a
dataset [3] of nearly 32K images is annotated with collision/no
collision labels. Secondly, a dataset of Udacity’s projects [12]
contains 70K images, captured while driving a car by left,
center, and right view cameras. These datasets are used for
training collision detection and steering model.

D. Framework Algorithmic Description

In general, there are two methods for implementing the
drone perception: 1) Implementing the model on the cloud
by streaming sensory inputs such as images to a server and
decision results back to the drone 2) Implementing the model
on the edge. Fig. 1 illustrates the common methods for im-
plementation of the NN-based perception for UAVs. Previous
works have demonstrated that NN is the main computation and
power bottleneck of the drone perception [5]. In this regard,
we propose an optimization algorithm for selecting appropriate
models for implementation of the NN inference on the cloud
or the edge, based on different application constraints such as
accuracy, latency, and power consumption.

The proposed method, illustrated in Algorithm 1, includes
two separate phases. The train phase (lines 1-3) is implemented
offline on a server. Afterward, lines 4-23 will be run in
the inference phase. The algorithm inputs are the application
parameters and constraints such as the velocity of drone
(v), distance from obstacle (x) and edge power budget along
with wireless network communication parameters including
αu, αd, β, upload speed and download speed which is

TABLE I: Average download and upload speed and power model parameters of wireless networks [6]

Download/Upload Speed Power Model

Network Type Download Speed (Mbps) Upload Speed (Mbps) αu (mW/Mbps) αd (mW/Mbps) β (mW)
3G 2.027 1.1 868.98 122.12 817.88
4G 13.76 5.85 438.39 51.97 1288.04
Wi-Fi 54.97 18.88 283.17 137.01 132.86

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

10

20

30

40

50

60

70

80

90

100

Scale:100% Scale:75% Scale:50% Scale:25%
R

M
SE

A
cc

u
ra

cy

Mobilenet V1 (Acc)

Mobilenet V2 (Acc)

Mobilenet V3 (Acc)

EfficientNet (Acc)

Resnet (Acc)

Mobilenet V1 (RMSE)

Mobilenet V2 (RMSE)

Mobilenet V3 (RMSE)

EfficientNet (RMSE)

Resnet (RMSE)
0

500

1000

1500

2000

2500

3000

3500

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Scale:100% Scale:75% Scale:50% Scale:25%

C

o
m

p
u

ta
ti

o
n

s

P

ar
am

et
er

s

Mobilenet V1 (#Param)

Mobilenet V2 (#Param)

Mobilenet V3 (#Param)

EfficientNet (#Param)

Resnet (#Param)

Mobilenet V1 (#Comp)

Mobilenet V2 (#Comp)

Mobilenet V3 (#Comp)

EfficientNet (#Comp)

Resnet (#Comp)

Best Accuracy: 97%

Least
#Parameters :

98K

Fig. 2: Accuracy, model size, and number of computations for different configurations of state-of-the-art scalable neural networks

mentioned in Table I. Total power consumption ptotal and total
latency ttotal are the outputs. In line 2, train models() function
trains collision and steering angle model with the state-of-
the-art models and return two models which are trained with
the goal of achieving the best accuracy or least latency. The
high accuracy model mcloud is originally considered for cloud
implementation. On the other hand, due to the power constrain
on the edge device a low-power model which means a model
with lower computation complexity is chosen for the edge
(medge). In order to reduce memory complexity on edge, 8-
bit ptq() function applies a 8-bit post train quantization (PTQ)
on medge (line 3). In the inference phase, line 5, we measure
latency if we do computation on cloud (tcloud) or edge
(tedge). The communication bandwidth and power consump-
tion is a significant parameters in real-time inference for drone
navigation applications. For measuring these parameters, we
refer to standard download and upload speed in average and
communication power consumption for wireless networks [6].
In order to calculate the power and latency of communication
between edge and cloud, Table I parameters could be used
along with equation 1, to calculate the theoretical results.

puplink = αu × upload speed+ β,

pdownlink = αd × download speed+ β
(1)

Lines 7 and 8 use the aforementioned parameters as input of
the framework. Since one of the important tasks of the drone is
obstacle avoiding, so we have a limited time to give steering
angle to the drone. This limited time tlimit is calculated in
line 9. Based on the latency and power constraints, if we
can run computations on edge (line 10), edge variable e will
be set (line 11). If we cannot meet constraints by running
computations on edge, we will do computation on cloud and
set variable c (lines 12 and 13). In line 17, computation latency
calculates which will be equal to tcloud if c is set or tedge if e
is set. Also, in line 19 we will have tcommunication if we did
communication on cloud (c = 1). Total power consumption is
also calculated in the same way in lines 20-22. Algorithm will
be return failed if it cannot meet requirements unless will be
return total power consumption ptotal and latency ttotal.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Software Experimental Results

To find the most efficient model for collision detection
and steering angle, we evaluate the models discussed in
section II-B. We used 10% of the mentioned dataset in sec-
tion II-C as evaluation set, trained each model for 100 epochs,
and measured the task accuracy for correct label prediction,
and Root Mean Squared Error (RMSE) of steering angle. The
number of computations and model size are also calculated
for each of four different configurations. Fig. 2 depicts models
accuracy, size, RMSE and number of computations. As you
can see in Fig. 2, we have a decreasing trend for the number
of computations and parameters by decreasing the scale size.

We selected two efficient models for hardware implemen-
tation, one with the best accuracy and the other optimized for
the least latency. For implementing the models on the edge
devices, we performed PTQ to shrink the model size even
further without significant loss in accuracy. As it is illustrated
in Fig. 2, MobileNetV1 with the configuration of 50% has
the highest accuracy of 97% and the lowest RMSE of 0.02.
Therefore, we choose this model as the accuracy aware model.
On the other hand, the ResNet 25% has the least computation
complexity and therefore, the least latency, with the compro-
mise of a few percent of accuracy and RMSE, which are 92%
and 0.11, respectively. The number of computations of ResNet
25% is 3.8x less than MobileNetV1 50%. After applying 8-bit
PTQ on ResNet 25%, we reach a 22x less complexity.

B. Off-the-Shelf Edge-Device Platforms Implementation Re-
sults and Analysis

To evaluate latency and power consumption of the trained
models on edge devices, we implement them on NVIDIA
jetson TX2 and GAP8 IoT processor [2], [13]. TX2 board
has Quad-Core Arm A57 processor along with Pascal GPU
cores with a maximum frequency 1300MHz. GAP8 processor
also has a tiny fabric controller with 8 cluster cores for
parallelization, which can be run at the maximum frequency
of 150MHz. We configured both devices to achieve maximum

TABLE II: Hardware implementation results of both models on the commercial off-the-shelf devices

Metric/Platform Accuracy Aware Model (mcloud, MobileNetV1-50%) Latency Aware Model (medge, ResNet-25%)
Server

(M1 Pro)
CPU

(ARM)
GPU

(Jetson TX2)
Low Power Processor

(GAP8)
Server

(M1 Pro)
CPU

(ARM)
GPU

(Jetson TX2)
Low Power Processor

(GAP8)
Computation Latency (ms) 30 250 40 95 22 21 13 40.6
Throughput (Inference/Sec) 33.3 4 25 10.5 45 47.6 76.9 25
Computation Power (W) N/A 3.9 4.8 0.77 N/A 3.7 4.7 0.85
Performance (GOPS) 14.8 1.8 11.1 4.7 3.7 3.8 6.2 2
Energy/Inference (mJ) N/A 969 192 73 N/A 79 70 34

Crazyflie 2.0 & AI Deck
Power

Analysis
Setup

ArduinoGAP 8
Processor

INA 219

Predicted
Label

(b)(a)

Fig. 3: a) GAP8 Processor residing the AI-Deck with power analysis setup
b) Grayscale images captured form Crazyflie camera labeled in real-time

performance and measured the models’ implementation re-
sults. Fig. 3(a) shows implemented setup for measuring the
power consumption of GAP8 when we do onboard processing.
We use INA 219 and Arduino to monitor power consumption.

For implementing the autonomous drone navigation applica-
tions, Fig. 3(b), we used CrazyFlie 2.0, an open-source flying
development instrument with AI-Deck extension board [2].
The AI-Deck features a low power camera, Wi-Fi module,
and ultra low power RISC-V processor GAP8 which lets
CrazyFlie do onboard processing. Grayscale images captured
from the drone camera are resized to 200x200 to feed to NN
models either onboard or on the cloud. We implemented both
models on hardware platforms and measured several metrics
reported in Table II. The bold numbers in Table II indicate
that the latency aware model has a 2.3x higher throughput
than the accuracy aware model on the GAP8 processor for
edge implementation by consuming almost the same power.
Therefore, we reach 53% lower energy consumption in each
inference by applying a tiny model on GAP8. Also, com-
munication power and latency that we calculated based on
Table I and equation 1 are 0.9W and 100ms, respectively.
We can compare this information along with the results
of Table II with two main constraints of the algorithm 1:
edge power budget and tlimit in order to make a decision for
doing onboard processing or cloud-IoT implementation. The
measured communication latency for transmitting the images
between the drone and the cloud would be the upper bound
for cloud-based implementation. Higher communication speed
can be achieved by reconfiguring the Wi-Fi module, but with
the cost of bandwidth and higher energy consumption, which
can be calculated by using power in Table I and equation 1.

IV. CONCLUSION

In this paper, we proposed a framework for optimization
of neural network based autonomous drone navigation using

single vision input. We evaluate the performance and accuracy
of several state-of-the-art scalable neural network models
trained for obstacle avoidance and steering task. Our frame-
work formulates the problem of selecting appropriate neural
network architecture based on parameters such as accuracy,
energy efficiency, latency, and throughput. We selected two
accuracy aware and latency aware models for implementation
and measured the aforementioned results for cloud and edge
computing devices. Comparing to the accuracy aware model
which has 97% accuracy, the latency optimized model achieves
up to 2.3x speedup, 22x less complexity, and 53% lower
energy consumption with a 5% accuracy penalty.

V. ACKNOWLEDGMENT

This project was sponsored by the U.S. Army Re-
search Laboratory under Cooperative Agreement Number
W911NF2120076.

REFERENCES

[1] B. P. Duisterhof et al., “Sniffy bug: A fully autonomous swarm of gas-
seeking nano quadcopters in cluttered environments,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 9099–9106.

[2] D. Palossi et al., “A 64-mw dnn-based visual navigation engine for
autonomous nano-drones,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 8357–8371, 2019.

[3] A. Loquercio et al., “Dronet: Learning to fly by driving,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

[4] Z. Wan et al., “Analyzing and improving fault tolerance of learning-
based navigation systems,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2021, pp. 841–846.

[5] H. Genc et al., “Flying iot: Toward low-power vision in the sky,” IEEE
Micro, vol. 37, no. 6, pp. 40–51, 2017.

[6] A. E. Eshratifar et al., “Energy and performance efficient computation
offloading for deep neural networks in a mobile cloud computing
environment,” in Proceedings of the 2018 on Great Lakes Symposium
on VLSI, 2018, pp. 111–116.

[7] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

[8] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 4510–4520.

[9] A. Howard et al., “Searching for mobilenetv3,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
1314–1324.

[10] M. Tan et al., “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International Conference on Machine Learning.
PMLR, 2019, pp. 6105–6114.

[11] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[12] Udacity, “An open source self-driving car,” in https://www.udacity.com/
self-driving-car, 2016.

[13] E. Flamand et al., “Gap-8: A risc-v soc for ai at the edge of the iot,”
in 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors. IEEE, 2018, pp. 1–4.

[14] S. Liu et al., “Stochastic dividers for low latency neural networks.”

