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QS-NAS: Optimally Quantized Scaled Architecture
Search to Enable Efficient On-Device Micro-Al

Morteza Hosseini

Abstract— Because of their simple hardware requirements, low
bitwidth neural networks (NN) have gained significant attention
over the recent years, and have been extensively employed in
the state-of-the-art devices that seek efficiency and performance.
Research has shown that scaled-up low bitwidth NNs can have
accuracy levels on par with their full-precision counterparts. As a
result, there is a trade-off between quantization (¢) and scaling
(s) of NNs to maintain the accuracy. To capture that trade-off,
in this paper, we propose QS-NAS which is a systematic approach
to explore the best quantization and scaling factors for a NN
architecture that satisfies a targeted accuracy level and results in
the least energy consumption per inference when deployed to a
hardware-FPGA in this work. We first approximate the accuracy
of a NN using a polynomial regression based on experiencing over
a span of ¢ and s. Then, we design a hardware that is scalable
with P processing engines (PE) and M multipliers per PE, and
infer that the configuration of the most energy-efficient hardware
as well as its energy per inference for a NN (g, s) are, in turn,
a function of ¢ and s. Experiencing the NNs with various ¢ and
s over our hardware, we approximate the energy consumption
using another polynomial regression. Given the two approxima-
tors, we obtain a pair of ¢ and s that minimizes the energy
for a given targeted accuracy. The method was evaluated on
SVHN, CIFAR-10, and ImageNet datasets trained on VGG-like
and MobileNet-192 architectures, and the optimized models were
deployed to Xilinx FPGAs for fully on-chip processing. The
implementation results outperform the related work in terms of
energy-efficiency and/or power consumption, yet having similar
or higher accuracy. The proposed optimization method is fast,
simple, and scalable to emerging technologies. Moreover, it can be
used on top of other AutoML frameworks to maximize efficiency
of running artificial intelligence on edge devices.

Index Terms— Quantized scaled neural networks, neural archi-
tecture search, energy optimization, hardware, accelerator.

I. INTRODUCTION

ITH the rapid growth of the computational ability
Wof processors, convolutional neural networks (CNNs)
have evolved to the point where they can surpass human-level
accuracy in many applications such as physiological data
processing, speech recognition and computer vision [1]-[6].
With all the advancements in their accuracy out-performance,
nevertheless, the energy consumption of CNNs on electronic
devices is still far away from any levels comparable to their
biological paradigms [7].
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General-purpose CPUs and GPUs can efficiently test CNNs
with precisions ranging from 8-bit fixed-point to 64-bit
floating-point for inference [8]. Even though they can handle
SIMD (Single Instruction Multiple Data) instructions such as
XNOR and population-count to implement extremely quan-
tized NNs such as binarized neural networks (BNNs) [9],
they are not yet as versatile as FPGAs to efficiently imple-
ment CNNs with arbitrary quantization [10]. On the con-
trary, FPGAs are commercial off-the-shelf devices that allow
the implementation of any arithmetic with arbitrary preci-
sion using any desired implementation styles from serial
to fully-parallel. Additionally, they have built-in algorithms
that can concatenate and activate as many required block
RAM (BRAM) primitives and hardware components as opted,
and in many cases, are used for prototyping and proof-of-
concept development.

When the hardware efficiency is a subject of matter, metrics
such as inference/J for the same application seem more fair of
a comparison than metrics such as TOPJ that are subjective to
quantization level and much to the advantage of low bitwidth
CNNs. Thus, commitment to a specific quantization level with
the sole aim of maximizing the TOPJ, rather inference/J, might
be a misleading avenue of research particularly when there
are multiple options for quantized arithmetic implementation.
In this paper, we raise a problem as: given a choice of
CNN that has a few degrees of freedom implemented on a
hardware that also has a few degrees of freedom, what is
the best selection of the independent variables that meets an
implementation goal? A grid-search as depicted in Fig. 1 over
a span of variously quantized scaled CNNs experienced on
hardware can provide options to trade off between accuracy
and efficiency, but not necessarily the most optimal options.
We present QS-NAS which is a systematic approach to explore
the best quantization and scaling factors for a neural network
architecture that results in the least energy consumption per
inference and meets a targeted accuracy when deployed to a
hardware. The main contributions of this paper include:

o A systematic methodology referred to as QS-NAS that
relies on both experimental and analytical methods to
optimize energy consumption of CNNs on FPGAs.

« Precise energy measurement of fundamental components
in an accelerator hardware designed for g-bit arithmetic
and targeting Xilinx FPGAs (28nm).

o Two polynomial regression methods that rely on char-
acteristics of CNNSs, to predict the accuracy of quantized
scaled CNNSs, and their energy consumption on hardware.

o A scalable hardware that, if properly engineered, imple-
ments the same image classification task with comparable
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Fig. 1. A grid-search to explore an efficient implementation over VGG-like
CNNs with various ¢ and s, highlighted with model size, computation and
accuracy for CIFAR-10, and color-coded with their energy consumption per
inference when deployed to a tiny low-power Xilinx FPGA from ZedBoard.

accuracy on a tiny low-power low-cost FPGA that yields
the highest efficiency as compared to the literature.

The rest of this paper is organized into the following sec-
tions: Section I underlines the background and motivations of
this paper. Section III overviews the related works. Section IV
introduces and formulates the problem statement of the
QS-NAS. In Section V, the neural network design space of
the QS-NAS is proposed. In Section VI a hardware design to
implement each of the proposed neural network architectures
for inference is detailed. Section VII formulates the character-
istics of the hardware design under the topic hardware space.
Section VIII navigates through the two neural network and
hardware spaces to propose an optimal solution that meets the
accuracy of the neural network and the minimum energy of
the hardware. Section IX compares our work to the related
work. Finally, Section X presents concluding remarks.

II. MOTIVATION AND BACKGROUND

In this Section, we experiment with a toy problem of train-
ing a multilayer perceptron (MLP) on the MNIST [11], which
is a dataset of 60,000 28 x28 pixel (8-bit) grayscale images of
handwritten digits of O to 9. Through this experiment we show
that a grid-search within an exploration space can pinpoint
desirable options for an implementation goal, yet hinting at a
question as to which direction of the grid should one navigate
to explore even better options? We also study the hardware
characteristics of fundamental components when synthesized
on FPGAs to infer relations between their energy consumption
and their precision that will be used in our regression-based
model later described in Section VII. Our MLP for the MNIST
has a scalable architecture as:

(in:784) — (3925 FC)— (392s FC) — (10 FC) — (out: 10),
ey

which includes three FC (fully-connected) layers with

784 x 392s, 3925 x392s, and 392s x 10 synapses respectively.

In addition to the parameter s, we add another parameter
quantization (g) to all weights, activations, as well as the

input pixels. We intentionally quantize MNIST pixels in this
Section to unify all operations in its MLP and to precisely mea-
sure energy of g-bit operations. We won’t quantize input pixels
of CIFAR and ImageNet datasets, as it causes severe informa-
tion loss. We will show their differently quantized input layers
will be implemented differently in hardware. To quantize the
input pixels of the MNIST dataset, each 8-bit pixel is truncated
to its ¢ MSBs (most significant bits). We train this MLP
for 4 experiments given by a cross-production of subsets
q € {2,4} and s € {0.5,1}, and measure the accuracy of
each experiment. To measure implementation energy of this
MLP on hardware, we design a simple hardware consisting
of a 784¢g input buffer for input fmap, another 392¢gs output
buffer for output fmap, one large block of memory with width
392¢s and depth (784 + 2 x 392s 4 10) to store the weight
values, one array of 392s g-bit multipliers, and a tree of 392s
adders whose input widths progressively increase from 2g
through the stages of the adder tree. We implement this design
on a tiny FPGA from the ZedBoard, deploy the workloads
for the 4 experiments, and measure the power, delay, and
consequently the energy per inference of the FPGA chip using
corresponding test-benches that provide precise toggle rate and
timing of the implementation. Table I shows the accuracy,
energy per inference, and resource utilization of the 4 exper-
iments implemented on the FPGA 77020 from the ZedBoard
at 143MHz, that captures the trade-off between scaling and
quantization of the MLP for accuracy and energy consumption.
The Table implies that if, for instance, an MLP(g, s) and a
corresponding hardware is provided and an MNIST accuracy
of nearly 97.8% with minimum energy consumption is of
interest, it is not easy to decide which pairs of (g, s) to select
unless a grid space of (g, s) is methodically navigated through
both neural network and hardware spaces.

Through this experiment, we also measure the energy con-
sumption of fundamental modules in an accelerator hardware
designed for g-bit arithmetic, including g¢-bit multipliers,
q-bit adders, average adders in a large tree of g-bit adders,
and g-bit read/write from FPGA BRAMs. Fig. 2 shows the
aforementioned components and demonstrates their energy
consumption and resource utilization per operations. Fig. 2
also discloses that for 1 < g < 8 both resource utilization and
energy per operation of LUT-based combinational multipliers
and adders in the Xilinx FPGAs are proportional to ¢> and ¢
respectively. More interestingly, it experimentally shows that
the average energy per addition in a large adder tree with
g-bit inputs is proportional to (¢ 4 1). This can be analytically
proven as well: consider an adder tree that sums up 2M g-bit
numbers in log, M stages as depicted in Fig. 2-(C). The tree
has (2M — 1) adders in total. The first stage consists of M
adders with g-bit inputs, the next stage consists of M /2 adders
with (g 4+ 1)-bit inputs, ... and the last stage consists of one
adder with two (g+log, M)-bit inputs and one (g+1+/log, M)-
bit output. Given that the power of each adder is proportional
to its input width, the total power of the tree is proportional
togM+(g+1D)M/2+(q+2)M/4+ ...+ (g +1og,M) that
approaches (2q + 2)M for large values of M. Thus, by aver-
aging the calculated total energy over the (2M — 1) adders,
the average energy per operation is proportional to (¢ + 1).
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Fig. 2. Energy consumption and resource utilization per g-bit operations on Xilinx FPGA 7VX690T (28nm) including (A) a g-bit multiplier, (B) a g-bit

adder, (C) an average adder in a large tree of g-bit adders, and (D) an 1024 x 18¢ memory instantiated with 36Kb BRAMs. Exception: for g=1 the multiplier

is an XNOR gate with a 1-bit output.

TABLE I

IMPLEMENTING MLP:784-3925-392s-10 FOR MNIST USING 392s Q-BIT
MULTIPLIERS AND A 392s-ADDER TREE ON FPGA 772020 AT 143MHz

q s | LUT BRAM | Delay | Power (W) | Energy (uJ) | FPS/W  Acc.
# # (us) [dyn. Jtotal [ dyn. | total | (inf/l) (%)
2 05| 1,717 22 830 [0.19 032 155 2.65 377k 96.53
4 054976 44 830 | 051 0.63 | 421 525 191k  97.71
2 1.0 | 3,406 44 11.05 | 0.38 051 | 4.16 559 179k 97.90
4 1.0]9934 875 11.05 | 1.02 1.15| 11.28 12.69 78k  98.23
TABLE 11

ENERGY CONSUMPTION (PJ) PER ¢g-BIT OPERATION ON XILINX FPGA
(28nm) FROM 7Z020. THE MEMORY IS ONE SINGLE 18K-BiT BRAM

Quantization (q) 1 2 3 4 5 6 7 8
Addition 043 077 141 202 237 230 273 316
Multiplication | 0.27 098 2.80 539 7.70 1239 1533 21.84
Mem. Read 075 150 225 3.00 3.76 451 526 6.01
Mem. Write 0.76 1.53 229 3.06 382 459 535 6.12

Table II tabulates the numerical results of the Fig. 2 that can
be used as a reference for a back-of-envelope estimation of
on-chip implementation of g-bit arithmetic on Xilinx FPGAs.

III. RELATED WORK

In light of minimizing energy consumption and/or maxi-
mizing performance of CNNs on hardware, model complexity
reduction methods such as pruning [12], [13], quantization [8],
[14], and compact CNN design [6], [15] have been proposed
over the recent years, in which the mathematical functions of
CNNgs are altered to simpler and less compute-intensive forms.
Many of quantization efforts take the parameter quantization as
a variable to optimize to the point at which accuracy is main-
tained [16], [17]. Also, many hardware-oriented methods take
quantization fixed as a priori. For instance, Yang et al. [18]
adopted a 4-bit quantization in advance to start off with
proposing an algorithm-hardware co-design for efficient CNN

accelerators. Recently, with the advent of BNNs [9] and
ternary neural networks (TNNs) [19], an enormous attention
of the research community has been dedicated to the design
of energy-efficient or high-performance accelerators for low
bitwidth CNNs on hardware [10], [19]-[22]. Zhao et al. [10]
introduced a BNN accelerator architecture with variable-width
line buffers to exploit binary arithmetic and explored the
potentiality of reduced storage requirements belonging to
BNN feature maps (fmaps). Also, a flexible framework called
FINN is brought forth by the work of in Umuroglu et al. [21]
that fully exploits the FPGA on-chip memory resources to
implement fast inference of BNNs. The goal of achieving the
sweet-spot between resource utilization and precision has been
analyzed in detail in the work of Prost-Bouscle et al. [22]
where the authors suggested that TNNs, when properly trained,
can obtain the performance of state of the art implementations.
Most recently, the QKeras library [23] is introduced as an
extension of the existing Keras library [24] that facilitates
design and deployment of heterogeneously quantized versions
of CNN models onto FPGAs.

Moreover, neural architecture search (NAS) has emerged
as a recent methodology that relies on search strategies to
manually or automatically explore CNNs with a defined
goal-commonly increasing the accuracy. HotNAS [25] is a
fast method that integrates a compression space during its
co-search, and takes advantage of a set of existing pre-trained
models to reduce the typical search time from 200 GPU
hours to less than 3 GPU hours, and achieves up to 3.97%
Top-5 accuracy gain on ImageNet dataset implemented on
a Xilinx FPGA within the timing constraint of 5 mS. HAO
(Hardware-aware Neural Architecture Optimization) [26] is
another NAS algorithm that incorporates integer programming
into its search algorithm to prune the design space and achieves
a solution with 72.5% top-1 accuracy on ImageNet at frame
rate of 50 FPS (frames per second), which is more than
60% faster than comparable related works. A recent approach
involving NAS proposed Codesign-NAS [27] that investigates
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different reinforcement learning based strategies to automati-
cally navigate the search space of CNNs and hardware archi-
tectures to simultaneously improve accuracy and efficiency
of image classification tasks (e.g. CIFAR-10 and CIFAR-100
datasets) on FPGAs. In [28], a simultaneous FPGA/CNN
co-design methodology is proposed whose implementation
results on a PYNQ-Z1 FPGA for an object detection task
outperform similar works in terms of Intersection-over-Union,
FPS, power consumption, and energy efficiency. Given all the
benefits that these approaches grant when targeting FPGAs,
they often disregard that a scaled-up lower-quantized (or vice-
versa) CNN might enjoy higher efficiency on hardware while
maintaining the same accuracy—A goal we attempt to address
in this paper.

IV. PROBLEM STATEMENT

To simplify and unify formulations in this work, we consider
a CNN block composed of a 2D convolution with weights and
input quantized to ¢ bits, followed by a batch-normalization
layer, and a quantizing ReLU activation function as instructed
in [23]. We define this block in whole as a Conv layer
i with the function ); = Fi(&;), where X; and ) are
input and output tensors with shapes (0 X H s WX,, Cx)
and (Qy Hyl, Wyl, C;y,> respectively, and F has a 2D con-
volution with shape (O£, Ngq, Hﬁ, Wﬁ, C]-‘> and a batch
normalization layer in the form of X' <« (.(X — a.) that
has 2 compressed parameters (a, and () per channel of
the convolution layer it follows. Note that we account for
the quantization level as another dimension of every ten-
sor shape. Therefore, &; € 20 HxxWax € apg Fi €

207 <Nz < HrxWr<CF We then consider a CNN is made
by stacking L of these blocks and, to further unify, the
quantization level of all layers and fmap, except the input data
and the output classification labels, is equal to Q Thus, with
a little abuse of notation that disregards the two differently
quantized layers, we define a baseline CNN as follows:

(QsﬁfsﬁF;’WFi’éf>

NN, Y= O 7

i=1...L

(Q,ﬁx[,

(;

e

@

where © denotes that block F; with different shapes is
repeated L times while sequentially passing and reshaping the
fmap A} from the first layer to the next layers. To compensate
the accuracy loss resulted by low quantization, we impose
one more scaling variable (s) to each 2D convolution layer
of the CNN, as illustrated in Fig. 3, and reformulate it to
NN{q, s). For simplicity in formulations, the scaling factor in
this work pertains to only the width of a CNN where it scales
only the number of all filters per layers, and correspondingly
the number of channels per filter and fmap. In a more
sophisticated scenario that we don’t practice in this paper,
scaling is recommended to be applied to the depth and input
resolution of a CNN in tandem with its channels (width) [5].

Given an adequate choice of FPGA, there are many imple-
mentation styles for the CNN that may meet an application
requisite such as execution time, power, performance, and effi-
ciency. We consider a commonly-practiced hardware design
consisting of a 2D grid of P x M multiply-accumulate (MAC)

g-bit Weight (W) and Activations (4)

21-“‘

Input Feature Map Layer Weights Output Feature Map
S. T T T T T T 7T sC AL T 1 T T
,/‘(\]]]]]]]]]]]]]] ,‘/T‘\‘\ ‘\‘\[\57
: y i
1] —_, .
I * (a H B H
- L
q vis { vits
Fig. 3. (top) A neural network architecture scaled to s and quantized to ¢,

and (bottom) a convolution layer with filters and channels scaled by s, and
g-bit precision per weight and fmap values. The fmap is quantized after a
quantizer.

TABLE III
PARAMETERS TO EXPLORE FOR OPTIMIZATION

Parameter Description

q quantization level of both weights and feature-map

s scaling factor for number of filters and channels per layer
P number of processing engines in hardware

M number of multipliers (and adders) per processing engine

units, and define the following optimization problem:

min Energy( HW(P, M) | NN{q, s))
q,s, P, M
S.t. NN(C], S) — @ f-(q,SN;,HF’_,

l
i=1...L
(X(q, Hy;, Wx,. s éi))

WF,-J@')

Accuracy(NN) > target_accuracy 3)

that reads: minimize the energy per inference of CNN
deployed to hardware w.r.t. ¢, s, P, and M, provided that a
target_accuracy is satisfied. The solution to this problem lies
in understanding the behaviour of both the Energy and the
Accuracy functions. Based on the evidence and experiments
we use approximators to predict the behaviour of the two
functions, and solve the problem through the following steps:
o (1) Experience with CNNs on a limited span of ¢ and s.
o (2) Adopt, fit, and evaluate an approximator for step (1).
e (3) Design a hardware for an implementation goal & metric.
e (4) Measure the metric for deployed CNNs from step (1).
o (5) Adopt, fit, and evaluate another approximator that pre-
dicts behaviour of the hardware for the measured metrics.
e (6) Optimize the problem w.r.t. the two approximators.

Table III summarizes the optimization parameters and Fig. 4
shows a top view of our proposed QS-NAS methodology.

To further simplify our problem statement, we assume: NNs
are deep. For ¢ = 1, we consider BNNs, where multipliers
are swapped with XNOR gates, and 0/1 bit-values represent
—1/+1 weight and fmap values [9]. The only layers that do not
follow the uniform quantization and scaling are the input data
and the classification labels from the first/last layers. Thus,
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Fig. 4. A high-level diagram of the proposed QS-NAS experimental-analytical methodology, highlighting the major steps.

TABLE IV
CHARACTERISTICS OF WORKLOADS VGG AND MOBILENETV1-192

Size (million bits) Million Ops per Layer Type

Model Largest st DW Vanilla Layers

Fmap | Layer (K X K) (CONV or FC)
VGG (q, s) 37gs>  0.06qs | 3.5s 298572
MobileNet-192 (q, s) | 42qs2>  0.59qs | 3.2s 26s 79452

neglecting the impact of the first/last layers for a N A (g, s),
we conclude:

Model_Size(NN{q, s)) « q . s*
Largest_Fmap_Size(NN{q, s)) x q . s
Operations(NN{q, s)) « s>
Mult_Op_Cost(NN{q, s)) x g*. s>
(

Add_Op_Cost(NN{q, s)) < q . s> 4)

The sizes of the model and the largest fmap of our CNN
govern the sizes of the weight memory and fmap memory of
our scalable hardware respectively, that will be explained in
Section VI. The computation is also proportional to s2. Since
q < 8 in this paper, as detailed in Section II, we observed
that look-up table (LUT)-based MAC components are more
energy-efficient than FPGA’s built-in digital signal proces-
sor (DSP) units, and note that the power and utilization costs
of LUT-based combinational multipliers and adders in Xilinx
FPGAs are proportional to g2 and ¢ respectively. We put aside
the limited amount of DSPs of the FPGA to implement the
batch-normalization operations.

V. NEURAL NETWORK SPACE
A. Experiments: Training CNNs With Different g & s

We perform our experiments on three datasets,
CIFAR-10 [29] and SVHN [30], that contain 32x32 RGB
images, as well as ImageNet [31] that contain large-sized
RGB images and are used for benchmarking methods.
CIFAR-10 includes 50K and 10K training and testing images
respectively, that contain 10 classes of animals and vehicles.
SVHN consists of 604K and 26K images of digits cropped
from street view images for training and testing respectively.
ImageNet consists of approximately 1 million and 50,000
natural images for training and testing categorized in
1000 classes. For CIFAR-10 and SVHN datasets, we selected

a VGGe-like architecture [32], and for the ImageNet, we used
MobileNetV1 [6]. To borrow simplicity in proposing our
method and formulations, we purposefully adopted these
architectures as they easily match our scalable setup. The
exact VGG-like architecture has been extensively used in [9],
[10], [19], [21], [22] with various ¢ and s. For MobileNet,
all publicly available models are already standardized with
channel-scaled variants that make them ideal candidates for
our approach, for each of which there exists 8-bit [33] and
floating-point [6] models.
The VGG-like networks has the following architecture:

(in) — 2 x (64s C3x3)— Poolyxr—2 x (1285 C3x3)— Pooly x>
—2 x (2565 C3x3)— Poolyx»

—2 % (5125 FC) —10FC — (out), 5)

where C343 and FC represent convolution (CONV) and fully-
connected layers. The parameters ¢ (quantization) is implicitly
included for weight and activation of all layers (in/out data
excluded). Also, the parameter s is clearly shown to have been
used to scale the number of filters per layer. Throughout this
work, we denote this VGG-like CNN with either NN (g, s)
or with g-bit NN-64s. This CNN has approximately 2 x
14952 million multiply or add operations and 3.7s> million
parameters, thereby having a model size 3.7¢s> Mb. The
largest fmap size is also contributed by its second layer of
size 64gs Kb.

For ImageNet, we used MobileNetV1 [6] with architecture:

(in)—325C3x3— 325DW343—64sDS3,3—2 X (1285 DS3x3)
—2 X (2565 D S3x3) —6x (5125 DS3%3)—1 x (10245 D S33)
— 1 x (1024s5C1x1) — Avg Pool — 1000F C — (out) (6)

where DW3,3 are depthwise convolution layers, and D S3x3
are depthwise separable layers, each composed of one
Cix1 followed by a DWs.3 layer. Table IV summarizes
the Largest_Fmap_Size and Model_Size, as well as the
Operations breakdown of the two CNN architectures.

We train all our models using QKeras [23] libraries in
120 epochs, using Adam optimizer [34], general data augmen-
tation techniques, and with an initial learning rate 0.001 that
decays by 0.1 every 40 epochs. For the VGG-like architecture
We down-scaled the CNN from 1 to 1/8th, and up-scaled
the quantization from 1, which is a BNN, up to 8 bits,
and jot down the accuracy for the 16-point experiments. For
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Modeling the accuracy for SVHN on VGG, CIFAR-10 on VGG, and ImageNet on MobileNet from experiments, by experiencing N'N (g, s) for a

subset of ¢ and s, then using a regression method to fit to the experiments and from which concluding same-accuracy contours.

the MobileNet architecture, we selected ¢ € {2,4,8} and
s € {0.5,1.0, 1.5}, and jot down the Top-5 accuracy for the
9-point experiments. To unify and expedite our experiments,
we trained all of the neural networks in this paper under the
same training setup, and didn’t employ extra fine-tuning meth-
ods. Consequently, the Top-5 accuracy of our 8-bit MobileNets
are within a margin of 2.6% (see [33]) and 3.5% (see [6])
loss as compared to their corresponding Google TFlite (8-bit)
and floating-point models respectively. Figs. 5-(left) shows the
results of the cross-product experiments for the three datasets.

B. Regression on the Accuracy

It is well-studied that scaling CNNs increases their accu-
racy [5], [6], and that the accuracy of quantized models
degrades to their least when the quantization is lowered to
BNNs [10], [21]. Clearly, the accuracy does not exceed a
certain level and will saturate to a level no more than 100%.
Based on the evidence and our experiments, we postulate that a
rational polynomial, as follows, can approximate the accuracy
function with respect to ¢ and s, as it satisfies all the mentioned
characteristics.

AAG.C].S + AAs.S + AA4.q + AA3

q.s + AAz.s + AAl.q + AAo
(7

where A; are learnable constant parameters. Using the
MATLAB cftool, we got a least-square-error method to fit
this function to our cross-product (16-point and 9-point)
experiments. Fig. 5 (middle) shows how the fitted surfs
look like. For the CIFAR-10 and the SVHN, the root mean

Accuracy(NN{gq, s)) ~

TABLE V

PERFORMANCE OF HARDWARE FOR DIFFERENT LAYER TYPES. FOR BOTH
WORKLOADS VGG(g, s) AND MOBILENET(g, s), THE HARDWARE
Is CONFIGURED TO P = M = 64s

Peak Performance Layer Type
of HW (P, M) 1Ist Layer DW Vanilla Layers
for Layer (input with C' channels) (K X K) (CONV or FC)
Ops/clk 2x PxC 2xX Px K 2x Px M

square error (RMSE) is 0.74% and 0.18%, and the mean
absolute error (MAE) is 0.56% and 0.13% respectively, which
indicate a good fit. We evaluate this regression on two new
testing data, i.e. NN{(g = 3,s = 1/4) and NN{g =
3, s = 1/2), that predicts 84.1%/95.7% and 88.1% /96.1%,
whilst actual values are 84.2% /95.9% and 88.7% / 96.2% for
CIFAR-10/SVHN datasets respectively. Table VI summarizes
the quality factors of the regressions for the three Accuracy
experiments, and Table VII evaluate each regression on 2 new
data points by comparing their predicted and actual values.

As an interesting conclusion from the regressions,
Fig. 5-(right) demonstrates that by plotting the accuracy con-
tours for the fitted surfs, a better visualization is obtained for
how the accuracy of the three models behave with respect to
q and s.

VI. HARDWARE DESIGN

All hardware designs in this paper are implemented
on either ZedBoard or VC709 evaluation platforms. The
former platform is equipped with the Xilinx FPGA
XC7Z020-CLG484 that incorporates 4.9Mb (=140 x 36Kb)
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Fig. 6. (Top) QS-NAS hardware (HWW(P, M)) configurable with P
processing engines and M multipliers/adders per PE for the deployment of a
NN{q, s). (Bottom) handling the first heterogeneously quantized layer within
the same pipeline that implements the other uniformly quantized mid-layers.

on-chip BRAMs, and the latter is equipped with the Xilinx
FPGA 7VX690T that incorporates 52.9Mb (=1470 x 36Kb)
on-chip BRAMs. Also, using the Xilinx Vivado Design Suite,
in all our analyses corresponding test-benches were used that
provide precise toggle rate and timing for precise FPGA chip
power and latency measurements respectively. Throughout
this work, the term ‘Performance’ indicates the amount of
multiplication or addition operations an accelerator is able to
carry out in a second and we measure it in terms of GOPS
(giga operations per second). Meanwhile, the term ‘Efficiency’
indicates the amount of multiplication or addition operations
an accelerator is able to perform per unit of energy, i.e. Joule,
and we measure it in terms of GOPJ (giga operations per
joule).

A. Scalable Design

Similar to works of [10], [19], [21], [22], we design
a hardware accelerator for FPGAs that relies on FPGA’s
resources and BRAMs that store the weight and intermediate
fmap of NN{g, s) during run-time. Our proposed hard-
ware, depicted in Fig. 6-(top) and described in Verilog HDL,
comprises two main blocks: 1) an array of P processing
engines (PEs) that each incorporates M multipliers/adders
and a weight memory sub-bank that stores a partition of the
CNN weights, and 2) an input and an output memory that
swap turn per process termination of every CNN’s layer and
store the temporary fmap data. Both the partitioned CNN
weights and the fmap data are packed along their channels
for every layer and are stored and folded in one or multiple
entries in their designated BRAMSs. As a result, the CNN
weights are partitioned in weight memory sub-banks each

with width M¢q and depth Model_Size/P/M/q. Correspond-
ingly, each of the two input/output memories has width Mq
and depth Largest_Fmap_Size/M/q. For the max-pool,
a 4-entry LUT-RAM buffers 2-by-2 patches and bubble sorts
them in 3 clock cycles to determine the maximum value in the
pool. We note that fully-connected (FC) layers from Eqn. (5)
are corresponding to convolution layers operated with valid
size. Thus, handling them is equivalent to handling convolution
layers with a nuance in their state machine.

1) Vanilla FC/CONV Layers: The computation tiling
scheme for regular FC/CONV layers is as follows: each
PE concurrently computes one output channel from a layer
of the CNN at a time, while internally parallel-processes
its task using an input-channel tiling scheme where the
packed fmap channel values directly accessed from the input
memory, and the packed weight channel values from the
weight sub-banks are element-wise multiplied and accumu-
lated. The performance of the hardware over a CNN layer
with N filters and C channels operating at a clock rate
freq is 2.min(N, P).min(C, M). freq. Thus, the average
performance of the hardware would be 2. P.M. freq provided
all N; and C; from the layer i of the CNN are multiples of P
and multiples of M respectively.

2) Depthwise Layers: Due to having a low arithmetic inten-
sity, implementing depthwise convolution layers on hardware
delivers poor scalability and inferior performance as opposed
to the vanilla convolution layers [35]. To embed the DW layers
in our hardware design, each PE adopts one DW channel to
implement as follows: all K x K values of the DW channel
are stored along one entry of the weight memory of the PE
in charge. A K x K patch of a corresponding input fmap is
buffered in a K x K array of flip flops that are updated with
the next consecutive patch of the fmap fetched from the input
memory after every K clock cycles. Using multiplexers, the
updated buffered patch is aligned with the K x K values along
the weight memory entry, and is executed through the pipeline
of the multipliers and adders after every K clock cycles. As a
result, the performance of the hardware to implement a DW
layer with C filters of K x K that takes an input data with C
channels is 2.min(C, P).K.freq.

3) The First Layer: To handle the first layer whose input is
an RGB image (8 bits per pixel), we slightly alter the array of
multipliers, that perform element-wise g-bit multiplications,
to the extent that an 8-bit x g¢-bit operation through the
same pipeline is performed by summing over shifted partial
multiplications between ¢-bit chunks of the input pixel and
replications of the g-bit weight. The performance of the
hardware over a CNN layer with N filters that takes an input
data with C channels is 2.min(N, P).C. freq. Fig. 6-(bottom)
illustrates our hardware alteration when configured for ¢ = 2.
If ¢ = 3, then 9 bits are allocated per input data pixel.

Table V summarizes the performance of the proposed hard-
ware for each of the three aforementioned types of layers.
The peak performance is achievable when the parameters
P and M are small enough to allow full utilization of the
HW pipelines. When configuring this hardware, at least three
goals can be pursued: the least power (P=1 and M=1), the
highest performance (P = oo and M = o00), and the most
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that yields the highest efficiency on FPGA (7Z020) given a deployed workload CNN (VGG). In each plot, the most efficient configuration is the green dot
that is closest to the highest efficiency lines. From the four experiments, it is seen that for the most efficient hardware is given by P = M = 64s.

energy-efficient configuration that is given by a pair of P and
M that will be explored in the next SubSection.

B. The Most Efficient Configuration

To explore the most energy-efficient hardware
configuration, a roofline model is usually sought that
pinpoints a ridge point where the maximum performance
is achieved using the minimum hardware resource
utilization [21]. The ridge point in the roofline model
of our hardware is obtained per scaling of the hardware
corresponding to the scaling of the CNN. Intuitively,
it HW i iiens 18 the most energy-efficient configuration
for a baseline NN, then the most energy-efficient
configuration for the hardware that implements NN (g, s)
is given by P(HW, e INN{g, s)) o s, and
M(HW s picien |INN{q, s)) o s. To further support our
claim and to find the HW,, ., for a baseline workload,
we empirically tweak the hardware parameters for workloads
VGG(q, s) withintherange | <g <2and 1/4 <s <1/2 as
illustrated in Fig. 7. We observe that the most energy-efficient
hardware configuration is obtained when P and M are equal
to the CNN’s smallest number of filters and channels per layer
respectively, both of which are 64s (input layer excluded).
Any other selection of P and M larger than 64s slightly
increases the performance, but at the expense of under-loading
the hardware pipelines, thereby deviating from the maximum
efficiency. Comparably, for their VGG-like BNN with
g = 1 and s = 1, authors in [21] selected P = 64 and
M = 128, a configuration that is not under-loaded because of
engineering their hardware (implemented on a large FPGA
from VC7006) to interleave filters and fmaps for the maximum
performance. Conducting the same experiment, we observed
that the most energy-efficient configuration hardware for
MobileNet(q, s) is as well given by P = M = 64s.

For VGG implementation on the tiny FPGA from the
ZedBoard, With P = M = 64s and the Model_Size =
3.7gs* Mb, the depth of every partitioned weight memory
is calculated as 3.7¢s%/64s/64s/q Mega entries, which is a
constant equal to 872 per simultaneously scaling the CNN
and the hardware. Also, given the Largest_Fmap_Size =
64gs Kb, the depth of the input/output memory units are
equal to 64¢s/64s/q Kilo entries, which is a constant
1024. Taking 1024 for the depth of all memory sub-banks
in our hardware configurations, the total design requires

approximately [4096¢s%/36] and 2 x [64¢s/36] of 36Kb
BRAMs for the weight memory and input/output memory
allocation that justifies employing the tiny FPGA from the
ZedBoard for the span of ¢ and s in this work. Similarly,
it can be shown that for fully on-chip implementation of
the MobileNet, [4096¢5%/36] and 24¢s of 36Kb BRAMs are
required to allocate to the weight memory and input/output
memory.

VII. HARDWARE SPACE
A. Experiment: Deploying CNNs With Different g & s

The 16 VGG-like architectures (for CIFAR-10 and SVHN)
with different ¢ and s from Section V-A were implemented
on the FPGA from the ZedBoard, and the power, delay, and
energy per inference were measured for each deployment.
Fig. 8-(top/left) shows the measurements of the experiments
demonstrating that 4 of them over-utilized the resources of
our selected tiny FPGA. Similarly, the 9 MobileNets for
ImageNet were implemented on the FPGA from the VC7009.
Fig. 8-(bottom/left) highlighting the energy per inference
measurements of the experiments and indicating 1 experiment
over-utilizing the resources of the 7VX690T FPGA.

B. Regression on the Energy

In deriving a mathematical model for the delays and the
energy of our hardware, the data transfer is a significant
contributor. Particularly, when an off-chip memory is utilized,
the delays caused by data marshalling between the FPGA
and the off-chip memory are nontrivial. In our work and in
similar related works (e.g. [19], [21], [22]) the inference is
processed fully on FPGA’s on-chip BRAMs. Thus, before
processing a new input image, the model weights are stored
on FPGA BRAMs, and, because it’s a once-and-for-all data
transfer, we don’t account for the delay to load them onto
the FPGA BRAMSs. In the next Subsections, we model the
Performance, Power, and the Energy per inference of our
hardware during the system run-time, i.e. after both the model
weights and the input data are loaded and during the on-chip
processing for an inference.

1) Modeling the Performance and the Execution Time:
Having determined that a HW, . ,,,, for all of our NN (g, s)
architectures in this work is given by HW(P = 64s, M =
64s), it can be concluded:

Performance, ..., (W, ficiens INN{g, s)) o s
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TABLE VI

QUALITY OF THE REGRESSION OVER A LIMITED NUMBER OF
POINTS (EXPERIMENTS) USING QUALITY FACTORS RMSE
AND MAE FOR FUNCTIONS Accuracy AND Energy

Function #Points RMSE MAE
Accuracy (VGG | SVHN) 16 0.2% 0.1%
Accuracy (VGG | CIFAR-10) 16 0.7% 0.6%
Accuracy (MobileNet | ImageNet) 9 0.1% 0.1%
Energy (ZedBoard | VGG) 12 9.7u 8.1uJ
Energy (VC709 | MobileNet) 8 1.3mJ 1.2mJ
52
Execution_Timec,cony (MW 1o INN{gq, s)) x = =1
(@)

that indicates when both the CNN and hardware are scaled
by s, both the operations count of FC/CONV layers and the
total number of multipliers in hardware are scaled by s> as
well. Thus, the execution time to implement FC/CONV layer
remains the same. Similarly, the operations count of the first
layer as well as DW layers are proportional to s (Table IV),
and so is the performance of the hardware for these layers
(Table V). Thus, the execution time for implementing the
Ist layer and DW layers and, consequently, the whole CNN
workload remains constant. As a result, the execution time per
inference and the throughput of all our VGG implementations
on ZedBoard at clock rate 143 MHz is approximately 0.34 mS
and 2,982 FPS respectively. Similarly, the execution time per
inference and the throughput of all our MobileNet implemen-
tations on VC709 at clock rate 100 MHz is approximately
3.02 mS and 331 FPS respectively.

2) Modeling the Power: We model the power of the hard-
ware with meticulous consideration upon full recognition of
its components and their toggling rate (nearly 100% for both
MAC and memory units for vanilla FC/CONV layers) during
the run-time. We break down the power as follows:

Power,,,,, ~ Power + Power + Powery,,,.. (9)

Memory

Given that HW, i,y = HW(P = 64s, M = 64s) for
the workload NN (g, s), and that the depth of all memory
units are equal to 1024, with the scaling of the H)V, only the
width of memory units scales. Consequently, each of the P
weight memory sub-banks and the I/O memory widen by Mgq.
Therefore:

Logic

Powery,,,., = Br.q s>+ Bi.q.s (10)

The major portion of the logic is contributed by the multi-
pliers and adders that scale by PMg? and PMgq respectively.
Thus:

Power,,,; ~ Bs. q*.s* + B, q.s*

Y

By taking the static power into account and merging By
and By from Eqns. (10) and (11), the Power is modeled as
follows:

Power(HWINN(q, s))~ B3.q>.s>+B>.q.s>+ B1.q.s+ Bo
(12)

where B; are constant parameters determined after regression.
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Fig. 8. (Left) energy per inference measured on hardware, and (right) a
regression on function Energy, for (top) the 16 VGGs deployed to their
efficiently-configured QS-NAS hardware on ZedBoard, and (bottom) the
9 MobileNets deployed to VC709. Four and one experiments (red dots) over-
utilized the FPGAs from the latter and the former experiments respectively.

TABLE VII

EVALUATING THE REGRESSION ON FUNCTIONS Accuracy AND Energy
WITH TWO NEW DATA POINTS. ALSO, THE TWO POINTS ARE THOSE
PROPOSED BY THE OPTIMIZATION SETUP, AND THEIR ACTUAL
VALUES ARE USED TO AMEND THE PREDICTED
VALUES FROM THE PROPOSITION

New Point in Functions of Accuracy(NN) | Energy(HW | NN)
NN (q, s) | Dataset Predicted  Actual | Predicted Actual

VGG (3,1/4) | SVHN 95.6% 95.9% 154 uJ 140 uJ
VGG (3,1/2) | SVHN 96.1% 96.2% 477 ul 414 uJ
VGG (3, 1/4) | CIFAR-10 84.1% 84.2% 154 uJ 140 uJ
VGG (3,1/2) | CIFAR-10 88.1% 88.7% 477 ul 414 )
MobileNet (3, 0.75) | ImageNet 82.5% 81.9% 3.95 mJ 5.13 m]
MobileNet (3, 1.87) | ImageNet 86.6% 86.5% | 22.86 mJ 23.36 mJ

3) Regression on the Energy: Because the execution time
remains constant, dependency of Energy to g and s corre-
sponds to that of the Power. Hence:

Energy(HWINN (g, sN)~E3.q>.s>+E>.q.s>+Ei.q.s+Eo
(13)

where E; are constant parameters to be learned and determined
from a regression. From another perspective and with reference
to Eqn. (4), the first leftmost term reflects the computa-
tion energy resulted from multiplications, the second term is
partially contributed by the computation from additions and
partially by communication for the model weight parameters.
The third term reflects the energy consumption for the fmap
communication, and the last term is a result of the static power
and components in hardware that are irrelevant to g and s.
We use Eqn. (13) to fit the 12-point and 9-point energy
experiments from the deployed VGG and MobileNet.
Fig. 8-(right) shows the fitted surfs. For the energy of the
deployed VGG models, fitting the 12 points to our proposed
polynomial in Eqn. (13) results in RMSE = 9.7ul] and
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MAE = 8.1uJ. For -evaluation, we tested the
Energy(HW(P = 16, M = 16) | NN{g = 3, s = 1/4))
and the Energy(HW(P =32, M = 32) | NN{g =3, s =
1/2)) configurations, for which the polynomial predicts
154 uJ and 477 ulJ, whereas their actual measurements
are 140 uJ and 414 uJ respectively. Table VI summarizes
the quality factors of the regressions for the two Energy
measurements, and Table VII evaluate each regression on
2 new data points by comparing their predicted versus actual
values.

VIII. OPTIMIZING ENERGY PER INFERENCE

To this point, we approximated both of our unknown
functions in Eqn. (3) w.r.t. to our two variables and established
a system of non-linear equations:

Energy(HWINN{(q, s))
= Eg.qz.sz + Ez.q.sz + El.q.s + Ifo
Accuracy(NN{q, s))
_ AA6.q.S + As.s + /f4.q + /f3
B q.s + AAz.s + AA].q + AAO
To minimize the Energy in this system of non-linear
equations, we can take s as a function of ¢ and Accuracy

and plug it in the function Energy and solve the following
equation:

(14)

0Energy
9q

We used MATLAB optimization toolbox to plot and to solve
the Eqns. (14) and (15). When plotting the function Energy
w.r.t. to ¢ and Accuracy, we obtain convex curves as depicted
in Fig. 9-(right) that reveal different quantization levels result
in the least energy consumption given different accuracy
levels. We look for delicate pairs of g and s that result in
moderately high (VGG(g = 3, s = 1/2) and MobileNet{q =
3, s = 1.875)) and moderately low (VGG(q = 3, s = 1/4)
and MobileNet(g = 3, s = 0.75)) accuracy levels, such that g
is a natural number near the minima of the convex curves, and
s is such that 64s is a natural number (for hardware-friendly
implementation), and the selection of both of which do not
over-utilize the FPGA resources.

Evidently, both the AN, given a dataset, and the HW
are the key contributors in characterizing the two func-
tions Accuracy(NN{q, s)) and Energy(HWINN{(q, s)).
An interesting case is observed for the VGG (g, s) given
either of the SVHN or CIFAR-10 datasets, in which an
identical neural network is used for two different datasets,
and is implemented on the same hardware. In this case,
if the two datasets have comparable distributions, the func-
tion Energy(HW|NN (g, s)) is the same, and the function
Accuracy(N'N{q, s)) becomes the key contributor in propos-
ing ideal pairs of (g, s). This scenario is clearly reflected in
Fig. 9-(top) and Table VII.

15)

|Accuracy:targetfaccuracy =0

A. Amending the Results

The proposed optimal pairs of ¢ and s should again be
evaluated and amended through the experimental setup, and

Accuracy (NN<q,s>)

%

Energy (HW | NN<q,s>)

. oo ”

__550
3500

Hardware
(ZedBoard)

Sk --"

profile Gason
SVHN Rk Sao0! SVHN/
on D350t ZedBoard
VGG S,
)

3 q (qﬁa ntigatior{’)
' T R
\ c.};\' ’
ST
CIFAR-10/

C e N
(VCT09) a5t N2
profile £

° for MobileNet 30 6@,,3/’ ImageNet/ |
. . e VC709

. %,
—14 Teell
% ImageNet
812 \ on
g \&

S

@

4 5 6 7
q (quantization)

4 5. . 6
q (quantization)

Fig. 9. Optimizing energy w.r.t. ¢ and accuracy and selecting ¢ (and §) for
a moderately high (red star) and low (green star) accuracy for (top) SVHN,
(middle) CIFAR-10, and (bottom) ImageNet datasets. For ImageNet, the Top-
5 accuracy is reported.

TABLE VIII

SUMMARY OF ZEDBOARD’S FPGA IMPLEMENTATIONS FOR
VGG. FOR ALL IMPLEMENTATIONS, FPS=2,982

VGG HW | LUT BRAM Power CIFARI0O _ SVAN
(q.s)  (P,M) # #  (W)|GOPJ FPS/W Acc.%) Acc.(%)
2,174y (16,16) | 7.218 18 0325] 178 9,158 811 952
(3,1/4) (16,16) | 8,733 27 0417 139 7,158 842 959
(4,1/4) (16,16) | 13,285 36 0612 95 4874 862 959
(3,112) (32,32) | 26,057 102 1233| 188 2418 887 962
(4,12) (32,32) |44,627 136 2201| 105 1355 89.1 96.2
Device: 72020 | 53,200 140

be accepted only if the predicted values from the regression
reasonably approximate the actual values from the experi-
ments. In the end, the actual values substitute the proposed
predicted values wherever it applies. Table VII evaluates
the regression on the 2 proposed data points per dataset
by comparing their predicted versus actual values. With the
amendments applied, Table VIII summarize 5 implemented
configurations on the ZedBoard, 3 from experimental setup
and 2 optimal ones from optimization setup (highlighted with
bold text), indicating that the optimal ones, in SVHN for
instance, have comparable accuracy levels while more than
1.5x as higher inference/J as their experimentally obtained
counterparts. Similarly, Table IX summarize 4 implemented
configurations on the VC709 platform, 2 from experimental
setup and 2 optimal ones from optimization setup, indicating
that a MobileNet(g = 3, s = 1.875) obtained through the
optimization setup can have approximately same accuracy and
efficiency levels as a MobileNet(q = 4, s = 1.5) obtained
through the experimental setup, yet with slightly more BRAM
and significantly less LUT utilization.
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Fig. 10.  Obtained from the regression and optimization setups, this plot
shows ImageNet top-5 accuracy versus dedicated energy budget, that increases
by increase of s, for differently quantized MobileNetV1-192, indicating the
superiority of g=3 for delivering the highest efficiency.

TABLE IX

SUMMARY OF OUR VC709’S FPGA IMPLEMENTATIONS FOR
MOBILENET. FOR ALL IMPLEMENTATIONS, FPS=331

MobileNet ~ HW # #  #Mult. Power| Avg. ImageNet
(q,s) (P,M) |LUT BRAM units (W) |GOPS GOPJ FPS/W  Top-5
(4,1.5)  (96,96) [315K 1,344 9K 7.9 698 88 41.7  86.6%
(3,1.875) (120,120) (263K 1,470 14K 7.8 | 1083 139 42.8 86.5%
(4,1.0) (64,64) |141K 672 4K 4.4 316 72 752 85.4%
(3,0.75) (48,48) | 42K 266 2K 1.7 181 107 1949 819%
Device:  7VX690T [433K 1,470
10°
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Fig. 11. The power consumption (top) and the performance (bottom) varies
for different layers of MobileNetV1-192 (¢ = 3, s = 1.875) deployed to
the FPGA 7VX690T. At 100MHz, the execution time per inference, the
average power and the average performance are 3mS, 7.8W and 1083 GOPs
respectively.

B. Further Analysis on Regression

One interesting aspect of the regression-based method is
that it reveals how incrementally increasing the energy bud-
get for a classification task could improve the accuracy.
For instance, Fig. 10, which is another representation for
Fig. 9-(bottom/right), indicates that for quantized scaled
MobileNets, the ¢ = 3 is superior in delivering the high-
est efficiency as compared to other quantization levels, yet

approximately on par with ¢ = 4. It also indicates that in order
to achieve a Top-5 accuracy of 80% for ImageNet, more than
2x energy is required if ¢ = 2 or ¢ = 8 would be selected
instead of ¢ = 3. Lastly, it can be observed that in order to
achieve 4% higher accuracy than 82.5%, the energy budget
should increase more than 5x.

C. Further Analysis on Experiments

To wrap up this Section, we detail the experimental results
of the MobileNet(q = 3, s = 1.875). According to Eqn. (6),
this model has 27 layers whose 4/ layer generates the
largest fmap data. Based on the Table IV, this CNN has
a Model_Size and Largest_Fmap_Size of approximately
5.5MB and 0.5MB respectively that occupy all FPGA BRAM
resources of 6.6MB (=1470 x 36Kb) for full on chip-
processing. As explained in SubSection VI-B, the hardware
should be configured to 120 PEs while each PE includes 120
3-bit multipliers and a tree of 119 adders and one accumulator.
As per provision of Table V, the performance of this hardware
at 100MHz using the 2D grid of 120 x 120 multipliers doesn’t
exceed 72, 72, and 2880 GOPS for three layer types including
the 1st layer (heterogeneously quantized), DW layers, and
regular FC/CONV layers respectively. At 100MHz it takes
0.36mS to load one 192 x 192x3 Byte input data through
24 1/O pins. Considering the amount of time to load a batch
size of one input data, and with different performance levels
for different layers of the neural network, Fig. 11 shows
that it takes 3.02 mS to thoroughly process one ImageNet
sample for inference and to obtain a Top-5 accuracy of 86.5%.
Fig. 11-(top) and -(bottom) depict the power consumption and
performance fluctuation of the hardware as inference time
proceeds through various layers, demonstrating an average
power and performance of 7.8W and 1083 GOPS respectively.
Given the average power and the performance over the course
of 3.02 S, the average efficiency of the hardware is 139
GOPS/W and the energy consumption per inference of the
ImageNet sample is 23.36 mJ. Figs. 12-(left) and -(right) show
the execution time and the energy consumption breakdown for
different phases of the inference, including loading the input
data and processing different layers. While Table IV indicates
that the DW layers in our MobileNet(g = 3, s = 1.875)
contribute to approximately 2% of the computation, Fig. 13
indicate that they occupy 27% of the total inference time of
hardware, yet to only 6% of the total energy consumption.
Finally, Fig. 13 depicts the power breakdown per FPGA
resources and a top-view of the resource utilization.

IX. COMPARISON TO THE RELATED WORK

For SVHN and CIFAR-10 datasets, compared to the litera-
ture [10], [19], [21], [22], as summarized in Table X, using the
same VGG-like CNN architecture, our selected optimal CNN
configurations, NNV{g =3, s = 1/2) and NN{g =3, s =
1/4), deployed to the tiny low-cost low-power Xilinx FPGA
from the ZedBoard results in accuracy levels higher or on par
with those of the related work, while giving the least power
dissipation and the highest inference/J.
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TABLE X
COMPARISON WITH FPGA IMPLEMENTATIONS USING DIFFERENTLY QUANTIZED SCALED VGG-LIKE ARCHITECTURES ON CIFAR-10
AND SVHN. WE RUN OUR MODELS 5 TIMES AND REPORT THE BEST (MEAN=£STD) FOR ACCURACY.
Pepip AND Pyyqip ARE THE POWERS OF FPGA AND THE BOARD

. Workload — Quant.  Accuracy Clock Throughput  Pep; Puall FPS/P.p,; FPS/Py a1l

Dataset Authors Platform  Price | \N6a) (g bit) (%) (MHz) (FPS) W) (W) (Inference/))  (Inference))
This work ZedBoard  low NN-16 3 95.86+(0.10) | 143 2,982 0.42 - 7,158 -

This work ZedBoard  low NN-32 3 96.21+(0.08) | 143 2,982 1.23 - 2,418 -

SVHN Umuroglu et al. [21] ZC706 high NN-64 1 96.40 200 21,900 3.60 11.7 6,080 1,870
Prost-Boucle et al. [22] | VC709 high | NN-64 2 97.60 250 27,043 7.08 - 3,820 -

Alemdar et al. [19] VC709 high | NN-64 2 97.27 200 3,390 4.80 - 709 -

Prost-Boucle et al. [22] | VC709 high | NN-128 2 97.70 250 13,526 13.70 - 987 -

This work ZedBoard  low NN-16 3 84.16+(0.15) | 143 2,982 0.42 - 7,158 -

This work ZedBoard  low NN-32 3 88.74+(0.18) | 143 2,982 1.23 - 2,418 -

Umuroglu et al. [21] ZC706 high NN-64 1 80.10 200 21,900 3.60 11.7 6,080 1,870

CIFAR-10 | Prost-Boucle et al. [22] | VC709 high | NN-64 2 86.71 250 27,043 6.80 - 3,976 -
Prost-Boucle et al. [22] | VC709 high | NN-128 2 89.39 250 13,526 13.64 - 992 -

Zhao et al. [10] ZedBoard  low NN-128 1 88.68 143 168 - 4.7 - 35.8

Alemdar et al. [19] VC709 high | NN-128 2 87.89 200 1,695 9.58 - 178 -

TABLE XI

COMPARISON WITH FPGA WORKS FOR IMAGENET CLASSIFICATION. THE REPORTED POWER IN ALL WORKS INCLUDES ONLY THE P¢pj, OF THE FPGA

Related work [36] [18] [37] [38] [39] [40] [41] This work
Model 0.5 MobileNet-224 DiracDeltaNet ResNet-18 AlexNet DoReFaNet/PF 1.0 MobileNet-224  AlexNet  1.87 MobileNet-192 0.75 MobileNet-192
Method (Baseline) Compact Ternarized Pruned Hybrid Redundancy- Structurally QS-NAS QS-NAS
- - Model - - Quantization Reduced Sparse q=3, s=1.87 q=3, s=0.75
Precision (W/A) 16/16 4/4 212 16/16 172 8/4 16/16 3/3 3/3
Top-1 Acc. (%) 63.3 68.3 65.6 57.1 50.3 64.6 57.3 65.7 58.3
Top-5 Acc. (%) 84.9 88.1 - 80.2 - 84.5 - 86.5 81.9
Device 72045 ZU3EG 72020  ZCU102 ZU3EG ZU9EG 7VX690T TVX690T TVX690T
DSP 109 360 202 1144 - 1452 1352 120 48
LUT 9K 52K 38K 552K 36K 139K 390K 263K 42K
BRAM 110 159 97 912 432 1729 1460 1470 266
Power (W) 2.1 5.5 2.6 23.6 10.2 - 15.4 7.8 1.7
Clock (MHz) 100 250 250 200 220 150 200 100 100
Inf./sec (FPS) 1.4 41 21 446 200 127 987 331 331
Inference/J 0.6 7.5 7.9 18.9 19.6 - 64.1 42.8 194.7
Exe. Time Breakdown Energy Breakdown Power Breakdown FPGA 7VX690T from VC709

@ Load Input Data

@ Process 1st Layer
@ Process DW Layers
O Process FC/CONV

Fig. 12. The execution time and the energy consumption breakdown for
different phases of the inference for MobileNetV1-192 (¢ = 3, s = 1.875)
on 7VX690T at 100MHz.

For ImageNet, we compare our hardware implementation
with the related work that seek performance and/or efficiency
of ImageNet classification on FPGAs. Table XI summarizes
the FPGA implementation results of our quantized scaled
MobileNets for the classification of the ImageNet dataset and
compares it with related FPGA implementations that adopt
different DCNN models for ImageNet classification, and use
some sort of a redundancy-reduction technique in tandem with
various quantization schemes. The Table is arranged from left
to right in an efficiency (Inference/J) ascending order. While
most of these works use heterogeneous computing platforms
that employ FPGAs along with DRAMs and/or CPUs, our
implementation is a minimal design that relies solely on the
FPGA resources to implement a compact MobileNet and gain

Resource Utilization View

per FPGA Resources

Clocks
12%

Static
7%

Fig. 13. (Left) the power breakdown per FPGA resources at clk
rate of 100MHz, and (right) a top-view of the resource utilization for
MobileNetV1-192 (g = 3, s = 1.875) on 7VX690T.

efficiency advantages. In fact, using the QS-NAS method, the
MobileNet in our work was quantized and scaled to the extent
that a fully on-chip processing method on a small FPGA would
be justified to deliver a targeted accuracy. This implemen-
tation style is also practiced in the work of Su et al. [40]
for a redundancy-reduced MobileNet, thereby allowing their
implementation to benefit from the high bandwidth of FPGA
on-chip BRAMs, and to gain a relatively high performance
of 127 FPS. Compared to the MobileNet implementation in
the work of Liao et al. [36] that adopts a baseline MobileNet-
224 (q 16, s = 0.5), our MobileNet-192 (¢ = 3, s
1.875) implementation has approximately 2% more accuracy,
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while gaining 236x and 70x in terms of FPS and efficiency
at clock rate 100 MHz. Also, in comparison to the works
of Lu ef al. [38] and Zhu et al. [41] that adopt an AlexNet
model sparsified to 10.80% and 11.03%, our MobileNet (g =
3, s = 0.75) implementation has approximately the same level
of accuracy, yet more than 9x less power dissipation and more
than 3x more energy efficiency.

X. DISCUSSION AND FUTURE WORK

Grid-search is a naive traditional method for hyper-
parameters optimization, but it can be both exhaustive and
non-comprehensive. For example, exploring a grid of g €
{1,2,3,4,5,6,7,8} and s € {0.25,0.5,0.75,1.0, 1.25, 1.5}
can be as exhaustive as conducting 48 experiments, yet the
provided data may lack information about corners of the
exploration space that, in cases, may contain optimal points.
On the other hand, in our work, these corners can be revealed
by the QS-NAS. For instance, the MobileNet (¢ = 3, s =
1.875) is an optimal point outside of the experimented grid
given by g € {2,4,8} and s € {0.5, 1.0, 1.5}, yet detected
and proposed by the method. At its core, the QS-NAS relies
on a small grid-search that provides some priori information
for the user and is used in a regression setup, the solu-
tion of which sheds further light on the exploration space
and reveals optimal corners that would otherwise have been
overlooked.

In our presented methodology, for every new pair of g
and s that the QS-NAS proposes, a new training procedure
is required. However, the method can be used in a run-time
configurable scenario in which there exists an abundant num-
ber of pre-trained models that can be quickly fine-tuned to new
datasets using fast methods such as transfer learning. In such
a scenario, without undergoing a completely new training
procedure, the method can pinpoint a pre-trained model, out
of a pool of many pre-trained models, nearest to the proposed
optimal solution and can fine-tune it using a fast method for
new given datasets.

Lastly, as a future work, the hyper-parameters used in
QS-NAS can be extended to more aspects of both the neural
network space as well as the implementation space. For exam-
ple, the “quantization” can be swapped with “input resolution”,
and the “scaling” can be extended to both “width” and “depth”
of the neural network. The criterion “Energy” can be swapped
with another criterion such as “inference time”, and a similar
approach to QS-NAS can be pursued to explore the optimal
hyper-parameters for the fastest inference on hardware.

XI. CONCLUSION

We proposed QS-NAS: a regression-based approach to
explore the optimal quantization (¢) and scaling (s) of a
NN for the least energy consumption on hardware. Having
designed a scalable hardware, we empirically approximate
both accuracy and energy per inference of N'A{g, s) with
polynomials. Given the two approximators, we obtain a pair
of (g, s) that minimizes the energy on hardware for a
targeted accuracy. In summary, our methodology: (A) has
no commitment to a specific quantization, but rather takes

quantization (in tandem with scaling) as a variable to optimize
the energy consumption for a targeted accuracy, (B) is fast
in that a limited subset of quantized scaled architectures,
that can be conducted in parallel experiments, are used to
model the design space exploration, (C) relies on simple,
yet well-reasoned principles, and can be used on top of
another AutoML framework, and (D) is scalable in that the
regression-based method is applicable to other devices and
other aspects of NNs. Both variables quantization and scaling
can be applied and extended to other aspects of a NN and
a corresponding hardware. For instance, the “scaling” can

be extended to “input resolution”, “number of filters” and/or
’ can be swapped

“CNN layers”, and the criterion “Energy’
with another criterion “inference time”, and by defining the
implementation design space as a regression problem, the
optimal independent variables can be sought and evaluated.

Compared to implementation results from the related
work [10], [19], [21], [22] that use the same VGG-like
CNN for CIFAR-10 and SVHN datasets, and compared to
ImageNet classification implementation results from the works
of [18], [36]-[41], our optimally quantized scaled architectures
deployed to the Xilinx FPGAs (28nm) have the highest
inference/Joule and/or the least power consumption while
delivering higher or comparable accuracy levels.
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