
E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical

Deep Reinforcement Learning

AIDIN SHIRI, University of Maryland Baltimore County, USA

UTTEJ KALLAKURI, University of Maryland Baltimore County, USA

HASIB-AL RASHID, University of Maryland Baltimore County, USA

BHARAT PRAKASH, University of Maryland Baltimore County, USA

NICHOLAS R. WAYTOWICH, Army Research Laboratory, USA

TIM OATES, University of Maryland Baltimore County, USA

TINOOSH MOHSENIN, University of Maryland Baltimore County, USA

Recently, Reinforcement Learning (RL) has shown great performance in solving sequential decision-making and control in

dynamic environment problems. Despite its achievements, deploying Deep Neural Network (DNN) based RL is expensive

in terms of time and power due to the large number of episodes required to train agents with high dimensional image

representations. Additionally, at the interference the large energy footprint of deep neural networks can be a major drawback.

Embedded edge devices as the main platform for deploying RL applications, are intrinsically resource-constrained and

deploying deep neural network based RL on them is a challenging task. As a result, reducing the number of actions taken by

the RL agent to learn desired policy, along with the energy-eicient deployment of RL is crucial. In this paper, we propose

Energy Eicient Hierarchical Reinforcement Learning (E2HRL), which is a scalable hardware architecture for RL applications.

E2HRL utilizes a cross-layer design methodology for achieving better energy eiciency, smaller model size, higher accuracy,

and system integration at the software and hardware layers. Our proposed model for RL agent is designed based on the

learning hierarchical policies, which makes the network architecture more eicient for implementation on mobile devices. We

evaluated our model in three diferent RL environment with diferent level of complexity. Simulation results with our analysis

illustrate that hierarchical policy learning with several levels of control improves RL agents training eiciency and the agent

learns the desired policy faster compared to a none hierarchical model. This improvement is speciically more observable as

the environment or the task becomes more complex with multiple objective subgoals. We tested our model with diferent

hyperparameters to achieve the maximum reward by the RL agent while minimizing the model size, parameters, and required

number of operations. E2HRL model enables eicient deployment of RL agent on a resource constraint embedded devices

with the proposed custom hardware architecture which is scalable and fully parameterized with respect to the number of

input channels, ilter size, and depth. The number of processing engines (PE) in the proposed hardware can vary between 1 to

8, which provides the lexibility of trade-of diferent factors such as latency, throughput, power and energy eiciency. By

performing a systematic hardware parameter analysis and design space exploration, we implemented the most energy-eicient

hardware architectures of E2HRL on Xilinx Artix-7 FPGA and NVIDIA Jetson TX2. Comparing the implementation results

shows Jetson TX2 boards achieve 0.1 ∼ 1.3 GOP/S/W energy eiciency while Artix-7 FPGA achieves 1.1 ∼ 11.4 GOP/S/W,

which denotes 8.8X ∼ 11X better energy eiciency of E2HRL when model is implemented on FPGA. Additionally, compared

to similar works our design shows better performance and energy eiciency.

Additional Key Words and Phrases: Reinforcement Learning, CNN, Energy Eicient Hardware Accelerator, FPGA, CPU

Authors’ addresses: Aidin Shiri, University of Maryland Baltimore County, USA; Uttej Kallakuri, University of Maryland Baltimore County,

USA; Hasib-Al Rashid, University of Maryland Baltimore County, USA; Bharat Prakash, University of Maryland Baltimore County, USA;

Nicholas R. Waytowich, Army Research Laboratory, USA; Tim Oates, University of Maryland Baltimore County, USA; Tinoosh Mohsenin,

University of Maryland Baltimore County, USA.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or ailiate of the United States government.

As such, the United States government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do

so, for government purposes only.

© 2022 Association for Computing Machinery.

1084-4309/2022/2-ART $15.00

https://doi.org/10.1145/3498327

ACM Trans. Des. Autom. Electron. Syst.

https://doi.org/10.1145/3498327

2 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

1 INTRODUCTION

Reinforcement Learning (RL) is a goal-oriented paradigm of machine learning in which the agent tries to learn a

policy to achieve complex tasks by trial and error. Reinforcement Learning is used for problems that involve

sequential-decision making where the agent needs to take actions in an environment to maximize cumulative

future rewards. In Reinforcement Learning, goals are speciied using a reward function [36]. Human feedback

can be used to specify goals as well as shown in [9]. Applications such as playing video games by receiving only

pixelated image inputs, Robotics and robotic arm manipulation, and self-driving vehicles like autonomous cars

and drone navigation system are areas that Reinforcement Learning has shown great achievements. Despite

demonstrating great performance in tasks that previously were hard to accomplish by conventional machine

learning methods in recent years, the previous papers in Reinforcement Learning focused on the algorithm and

theoretical aspects, and very few works have considered eicient hardware design for RL [21].

Learning the policy for the RL agent can be a complex and time-consuming task. It is important to train the

agent in the fastest and most eicient way, especially when the agents act in a real-world environment where

performing actions could be expensive. One scalable way to do this is by breaking down the policy that RL

agent needs to learn into multiple levels of hierarchy. In this method desired policy is divided into individual

sub-policies. Two neural networks are trained for performing the desired task, one for selecting the proper

subgoal, and the other for producing the proper action to perform in the environment. Besides making it easy to

specify goals and rewards, hierarchical subgoals can additionally be reused in other similar environments that

might have the same subgoals.

Standard RL policies struggle with solving long horizon tasks with sparse rewards. Complex tasks can be

broken down into smaller sub-tasks and we can make use of this information to build agents with multiple levels

of control. We use this notion to build a reinforcement learning agent architecture and experiment with diferent

parts of the network architecture for eicient deployment of RL agents on the embedded devices. The novelty of

this paper is proposing an eicient hardware architecture for reinforcement learning based on hierarchical policy

learning. So far, most of the previous works have focused on only hardware or software aspect of reinforcement

learning.

In this paper, we propose E2HRL, a hardware-friendly architecture for Reinforcement Learning, which uses

hierarchical policy learning. By employing cross stack design methodology, we have designed a scalable and

parameterized hardware for eicient deployment of RL on the embedded devices. We performed a Neural Network

hyperparameter analysis to ind the best trade-of between accuracy and model size and a scalable low power

hardware is designed for the optimized model and is implemented both on FPGA and ARM CPU.This paper

makes the following contributions:

• Propose a hardware-friendly architecture for RL which works based on hierarchical policy learning.

• Perform a Neural Network hyperparameter analysis to ind the best trade-of between accuracy and model

size.

• Design a scalable and parameterized hardware for eicient deployment of RL on the embedded devices.

• Implementation of the E2HRL model with diferent levels of parallelism on Artix7 FPGA and compare them

in terms of power consumption, energy eiciency, latency, and utilized resources.

The rest of this paper is organized as follows: Related prior work is provided in Section II. Section III explains

the background of deep Reinforcement Learning and Hierarchical policy learning, along with the environment

setup for our experiments. Section IV describes the proposed E2HRL system architecture. Section V talks about

neural network optimization and software experimental results and analysis for energy eiciency. Section VI

describes the E2HRL hardware architecture design and implementation results and comparison with similar

works. Finally, we conclude in Section VII.

ACM Trans. Des. Autom. Electron. Syst.

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 3

2 RELATED WORKS

Despite past eforts and early success on Reinforcement Learning, most of the initial works in the RL domain

are limited to simple tasks such as training a speciic robot [17], automatic inverted light control [23], and

optimizing dialog policy [34]. These works do not take optimizing the power and performance trade-ofs into

account. The advent of deep learning has caused signiicant progress in RL like other machine learning areas,

which resulted in the feasibility of creating powerful autonomous agents that can interact with the environment

and learn to perform complex tasks over time with trial and error. In recent years, several works that have

used RL algorithms have been proposed. Recently, Google Deep Mind announced that the AlphaGo Zero beat

the previous champion-defeating AlphaGo 100-0 using an algorithm based only on RL, with no human data,

guidance, or any domain knowledge beyond the game rules [33]. Authors in [22] have achieved human-level

control in many Atari games with Deep RL. Several works are also proposed which use robotic simulators

to train the network with an unlimited amount of data and afterward, transferring the knowledge from the

simulator to real-world [26] [38]. Training autonomous robots to navigate to designated locations is another

application as well [45]. Recent growth in neural networks and deep learning-based algorithms have been

coupled with a signiicant increase in the model size and networks with a high number of parameters. To address

the high computational and storage complexity of neural networks, diferent computing platforms have been

engaged for a diverse range of applications. While most of the current research use software solutions based on

general-purpose CPU and GPU platforms to address computational issues, specialized hardware accelerators

have demonstrated superior performance in terms of energy eiciency and meeting real-time requirements.

Domain-speciic accelerators can achieve orders of magnitude improvements in performance per watt compared

to general-purpose computers for machine learning applications [7]. Despite great interest and innumerable

valuable works in design and implementation of hardware accelerators for diferent Artiicial Intelligence and

Machine Learning applications such as image classiication[14], Recurrent Neural Network Based Language

Models [19], automated tools for deep neural networks implementation with resource and performance estimation

[28, 29] , stochastic computing neural network accelerators [20] , very few works have considered hardware

requirements for RL as well [8, 31, 32]. Authors in [15, 16] proposed low power Deep Reinforcement Learning

SoC which supports CNN,RNN, and FC layers. FPGA accelerators for neural network based RL has drawn more

attention in recent year due to their lexibility and better performance and energy eiciency compared to other

heterogeneous platforms[5, 6, 30, 35, 37, 40]. Despite ll of the valuable past eforts, still a comprehensive approach

for eicient deployment of RL application on hardware design is yet to be proposed. In summary, most of the

previous works in the RL domain are limited to the software implementations [24], or on general-purpose GPU

at best-case scenarios. Embedded GPUs are among the best devices to handle precise loating-point operations

that are able to perform typically at Tera loating-point operations per second (TFLOPS) given a power budget of

a few watts (e.g. 1.3 TFLOPS at 7.5 watts for the NVIDIA Jetson TX2 [1]). However, their energy consumption per

multiplication or addition operations is still high (0.17 TOP/J) as a result of handling expensive loating-point

operations. Adopting high precision operations is mandatory for training machine learning algorithms, but

during their test and inference, cheaper operations such as binary/ternary operations that consume signiicantly

less energy can deliver the same functionality.

3 BACKGROUND

In this section, we present a brief background of reinforcement learning and hierarchical Reinforcement Learning.

Then we describe the environmental setup and how the tasks can be solved using hierarchical Reinforcement

Learning.

ACM Trans. Des. Autom. Electron. Syst.

4 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

State

RL Agent

Policy
Action

Reward

EnvironmentEnvironment

Fig. 1. Traditional Reinforcement Learning agent block diagram. The agent interacts with the environment by executing an

action based on its policy. The environment then provides a new state and a scalar reward to the agent

3.1 Deep Reinforcement Learning

Reinforcement Learning agents can learn to solve complex sequential decision making tasks by interacting with

the environment as shown in Figure. 1. Typically, we need to deine a reward function, state and action spaces and

the actual learning algorithm. Given these ingredients, the agent learns to solve the tasks autonomously without

intervention. The agent only gets a reward based on the performance of the tasks to learn the desired policy

without specifying how to accomplish the task. Usually,Reinforcement Learning is formalized using Markov

Decision Processes (MDP). An MDP is deined as a tuple (S, A, P, R, γ), where S is the state space, A is the action

space or the set of actions available to an agent, P is the unknown transition function, R is the reward function

and γ ϵ (0, 1) is the discount factor. The RL agent interacts with the environment by acting according to a policy

π which is a mapping from states to actions, or a probability distribution over actions. The goal at each step is to

maximize the discounted sum of future rewards,
∑∞

t ′=t γ
t ′−tRt ′ , and the quality of the policy at time t is measured

by the value function Eπ (
∑∞

t γ tRt+1 |s0 = s), with initial state s .

3.2 Hierarchical Reinforcement Learning

Reinforcement learning techniques have shown great promise in the past few years, getting us a few steps closer

to deploying them in the real world. However, there are still many challenges before we can safely and eiciently

deploy them in the real world, especially when these technologies work closely with other humans. One of the

issues is low sample eiciency, where we require a large number of resources in terms of computing time and

data to train these autonomous agents. One way to tackle this problem is to make use of the hierarchical structure

present in complex sparse feedback tasks to improve learning. It is possible to use the hierarchical structure

and learn multiple levels of control to solve tasks as shown by [3] and [18]. These methods have been shown

to improve the performance in the sparse reward and long-horizon tasks. In this work, we use the hierarchical

structure with 2 levels of control and in addition with the assumption that we know the subgoals to solve the

task. In the following sections, we explain the environmental setup and the E2HRL architecture.

3.3 Environmental Setup

Our experiments are performed on the MiniWorld environment [4]. It is a minimalistic 3D environment for

Reinforcement Learning and robotics research. The agent can navigate rooms and manipulate objects using its

ACM Trans. Des. Autom. Electron. Syst.

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 5

Start State

Key
Green

Box

Environment 2:

Two Levels Hierarchy

Purple Box Green Box

Purple

Box

Start State

Blue Key Box

Blue Box Red Box

Environment 3:

Two Levels Hierarchy

Start State

Key Box

Environment 1:

One Level Hierarchy

Box

Red Key

Green

Box

Fig. 2. This figure shows the task graphs for each of these environments in addition to Three Miniworld environments. In

Environment 1, the task is to first collect the red key and then reach the green box. In Environment 2, The task is to first

collect the red key and then reach the door which can be opened only ater collecting the key. And then reach the green box

(which represents the final goal location). In Environment 3, The agent has to check the color of the box and then decides to

collect the right key and go to the box. The agent receives a reward when it reaches the box, provided it has collected the

right key first.

irst-person view as shown in igure 2. In our experiments we set up three scenarios with diferent diiculty levels.

We assume that humans deining the task have knowledge of how the tasks can be divided into smaller sub-tasks.

Sub-tasks are deined prior to training based on domain knowledge. This is similar to some prior work in the

ield as seen in [2]. Figure 2 shows more details about how each task is divided into sub-tasks in our experiments.

In environment 1, shown in igure 2 (a), the agent is in a room that has a box and a key. The agent is spawned

at random locations in each episode. The task is to irst collect the red key and then reach the green box. The

agent receives a reward when it reaches the box, provided it has collected the key irst. If the agent reaches the

box without the key, it receives no reward. As described earlier this task can be decomposed into 2 subgoals: 1.

reach the key, 2. reach the box.

In environment 2, shown in igure 2 (b), the agent is in a room that has a key. The box is in the other room but

is blocked by a purple box (which represents a door). The task is to irst collect the red key and then reach the

door which can be opened only after collecting the key. And then reach the green box (which represents the inal

goal location). The agent receives a reward when it reaches the box, but the only way to reach it is to irst collect

the key, open the door and then go to the green exit. If the agent cannot complete the task in a ixed number of

steps the episode ends and it receives no reward. This task can be decomposed into 3 subgoals as well: 1. reach

the red key, 2. open the door, 3. Reach the green exit.

ACM Trans. Des. Autom. Electron. Syst.

6 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

900 900 900

121

1200 1200

0

400

800

1200

1600

Environment1 Environment2 Environment3

Model Size (KB)

Non HRL HRL

25% 18% 23%

93% 96% 92%

0%

20%

40%

60%

80%

100%

Environment 1 Environment 2 Environment 3

Task Completion Rate(Accuracy)

Non HRL HRL

3.7x 5.3x 4x

7.4x

Decrease

1.3x

Increase

1.3x

Increase

Fig. 3. Comparison between task completion rate and model size of none hierarchical and hierarchical reinforcement learning

models. All models are trained for 1 million steps and their performance are measured aterwards.

In environment 3, shown in igure 2 (c), the agent is in a room that has a box, a blue key and a red key. The

agent is spawned at random locations in each episode and the box is either red or blue. The agent has to check

the color of the box and then decide to collect the right key and go to the box. The agent receives a reward

when it reaches the box, provided it has collected the right key irst. If the agent reaches the box without the

key, it receives no reward. Or, if the agent reaches the box with the wrong colored key, it receives no reward. As

described earlier this task can also be decomposed into 2 subgoals: 1. reach the red/blue key, 2. reach the box. But

here the agent has 3 subgoals to choose from, 1. reach the red key, 2. reach the blue key, 3. reach the box.

4 PROPOSED SYSTEM ARCHITECTURE

In this section, we present an overview of the proposed E2HRL architecture and explain the agent training in

detail. E2HRL is designed to perform eiciently as an agent in Reinforcement Learning environments. igure

5 shows the proposed network architecture of the E2HRL, which consists of convolutional, Dense, LSTM and

softmax layers. We compared standard conventional reinforcement learning baselines with the hierarchical

reinforcement learning architecture in terms of accuracy and memory size as shown in Figure 3. We train both

with the same budget in terms of environment steps. As seen in Figure 3, the proposed HRL achieves 7.4X less

memory for Environment 1. For the other two environments, HRL utilizes slightly higher memory, 1.3X, when

compared to the baseline. However the accuracy in terms of inal task completion percentage is consistently

better for all test cases, 3.7X ∼ 5.3X. Signiicant improvement in the task completion rate justiies the slightly

higher memory requirement for HRL.

4.1 E2HRL Architecture

The agent consists of 2 modules ś the Subgoal module and the Action module. Both these modules get the image

embedding from the convolutional layers which are used to process the image observation. The Subgoal module

is responsible for producing the subgoal given the current observation. The action module takes the current

observation and the subgoal produced by the subgoal module to output the action which is executed in the

environment. The architecture is shown in igure 4 where the agent is trained in 2 phases. Both policies are

trained using proximal policy optimization [27]. The high-level policy does not need to output a goal at every

environment time step. It outputs a subgoal and sleeps for several time steps (K), which is then used by πC to

ACM Trans. Des. Autom. Electron. Syst.

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 7

 State

Observation

Returned

Reward

Conv

Im
a
g
e E

m
b

ed
d

in
g

Vector

Concatenation

π
G

S
u

b
g

o
a

ls

π
G

S
u

b
g

o
a

ls

π
C

 (D
en

se)

Im
a
g
e E

m
b

ed
d

in
g

S
u

b
g
o
a
ls

Im
a
g
e E

m
b

ed
d

in
g

S
u

b
g
o
a
ls

π
C

 (D
en

se)

Im
a
g
e E

m
b

ed
d

in
g

S
u

b
g
o
a
ls

E2HRL

agent

Subgoal

module,

Outputs for

every K step Action

module,

Outputs for

every step

EnvironmentEnvironment

Action

K

Fig. 4. Block diagram of the proposed architecture of the hierarchical RL agent. Here the policyπ of the agent consists of

2 main modules ś the subgoal moduleπG and the action moduleπC . The image observation is first processed using a

convolution network to get an image embedding. The subgoal module is responsible for providing a subgoal or a high-level

action given the current observation. The action module gets the image embedding and the subgoal and calculates the action

which is executed in the environment. The subgoal module is activated once every K steps. The detailed architecture of

E2HRL agent is provided in the Figure 4 and Figure 9.

output low-level actions. Additionally, this helps to reduce the hardware and time complexity. We experiment

with diferent intervals, K and reported the results in the next section.

4.2 Training the Subgoal and Action Modules

First, the low-level policy (πC) is trained to perform the subgoals. This is done by concatenating a one-hot

encoded task id to the actor network. The agent is trained to perform the subgoals given by these task ids. Once

the agent is able to perform these individual subgoals, the action module is frozen and the subgoal modules

are trained in the next phase. In the second phase, the high-level policy (πG) is trained to select subgoals. This

output is then concatenated to the low-level policy, which executes a policy to reach the subgoals. As seen in

igure 4, the subgoal module consists of an MLP with multiple fully connected layers. The input to these layers is

the image embedding from the convolutional image encoder. This architecture is suicient for the irst simple

task. But the second and third tasks are more complicated and need some form of memory.

ACM Trans. Des. Autom. Electron. Syst.

8 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

Fig. 5. The proposed network architecture of the E2HRL, as described in figure 4. The subgoal module has 2 configurations.

One with fully connected (FC) layers shown in green and one with LSTM shown in purple

Table 1. FC-HRL and LSTM-HRL neural network architecture in details

FC-HRL Layers LSTM-HRL Layers Input Window # Kernels Activation

Conv 1 Conv 1 40*30*3 (3,3) 32 ReLU

Conv 2 Conv 2 20*15*32 (3,3) 32 ReLU

Conv 3 Conv 3 10*8*32 (3,3) 32 ReLU

Flatten Flatten 5*4*32 - - -

Dense [πG] LSTM [πG] 32 - - ReLU

Dense [πC] Dense [πC] 32 - - ReLU

Action Action 3 - - Softmax

Therefore we add an LSTM layer after we get the image encoder and before passing it to the MLP. Long Short-

Term Memory (LSTM), are a particular type of recurrent neural network which have internal contextual state

cells that act as long-term or short-term memory cells. This is an important characteristic when the prediction of

the neural network depends on the historical context of inputs, rather than only the last input. This modiication

seems to help solve the tasks faster and is required for the second and the third task.

5 E2HRL NEURAL NETWORK OPTIMIZATION FOR ENERGY EFFICIENCY

Neural network optimization is the process of systematic model architecture engineering to achieve the best

possible performance with the smallest model size and least computation. We performed extensive analysis

on the model search space and evaluate our model performance. Search space deines the networks that can

be examined to produce the inal architecture. The initial E2HRL model consists of three convolution layers, a

latten layer, and a dense (fully-connected) layer with an output of 32 for generating an image embedding vector.

Next, the embedding vector is fed to the subgoal module which is a dense or LSTM layer to produce the subgoal

vector. Finally, subgoal vector and image embedding are concatenated together to fed another dense layer with

Softmax activation and generate the desired output for the agent to act in the environment. The initial HRL agent

architecture is shown in detail in Table 1.

We performed a macro-architecture search for layer type, hyper-parameters, and connections with other layers

to achieve the best performance. Furthermore, for each block, we optimize the convolutional layer kernel size

and ilter number, as well as the dropout rate, the existence of a pooling layer after each convolution layer. A

number of optimum architectures that produced the best results for the three environments discussed in the

previous section are summarized in Table 2. By comparing the number of parameters, and model size of diferent

conigurations, we observed that Conig 2 for FC-HRL and LSTM4 for LSTM-HRL achieves almost the same

ACM Trans. Des. Autom. Electron. Syst.

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 9

reward as the best conigurations, while having less memory and computation complexity. Therefore, we select

Conig 2 and LSTM4 as the optimal design for implementing on hardware. Figures 6,7, and 8 illustrate the model

size and performance of diferent conigurations with respect to the time step, K , amount of time steps that πG
sleeps. We observe that for a simple environment like environment 1, the model performs better with smaller K.

As the complexity of the environment increases, the models perform better when K is larger.

0

20

40

60

80

100

FC1 FC2 FC3T
a

sk
 C

o
m

p
le

ti
o

n
 R

a
te

 (
%

)

K=10 K=20 K=50

(a) (b)

Fig. 6. Environment 1 (a) Performance and Memory size of hierarchical RL agent for diferent configurations with respect to

K.

(b) Reward achieved by the HRL agent in the Miniworld environment with respect to the number of episodes for diferent

configurations

0%

20%

40%

60%

80%

100%

LSTM2 LSTM4 LSTM8 LSTM16T
a

sk
 C

o
m

p
le

ti
o

n
 R

a
te

 (
%

)

K=1 K=10 K=25 K=50

(a) (b)

Fig. 7. Environment 2 (a) Performance and Memory size of hierarchical RL agent for diferent configurations with respect to

K.

(b) Reward achieved by the HRL agent in the Miniworld environment with respect to the number of episodes for diferent

configurations

ACM Trans. Des. Autom. Electron. Syst.

10 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

(a) (b)

0%

20%

40%

60%

80%

100%

LSTM2 LSTM4 LSTM8 LSTM16T
a

sk
 C

o
m

p
le

ti
o

n
 R

a
te

 (
%

)

K=1 K=10 K=25 K=50

Fig. 8. Environment 3 (a) Performance and Memory size of hierarchical RL agent for diferent configurations with respect to

K.

(b) Reward achieved by the HRL agent in the Miniworld environment with respect to the number of episodes for diferent

configurations

6 E2HRL HARDWARE ARCHITECTURE DESIGN, IMPLEMENTATION AND ANALYSIS

This section describes the hardware architecture design and implementation of E2HRL with commercial of-the-

shelf devices. We have implemented our method on the Xilinx Artix-7 FPGA board and Nvidia Jetson TX2 (shown

in igure 9) to measure the energy-eicient implementations for embedded devices.

6.1 Hardware Architecture Design

Figure 10 shows the detailed block diagram of the E2HRL hardware architecture. The architecture mainly focuses

on important hardware facets such as on-chip memory re-utilization and parallel computations. Another key

feature is to it the hardware on smaller FPGAs with smaller Block RAM sizes. This additionally implies the

hardware should occupy minimum area while meeting the latency requirements. The designed hardware is

such that it can be easily re-conigured and meanwhile portable. The reconiguration is mainly targeted at

implementing newer models, improving the overall performance and improving the parallelizations. This is

achieved by increasing the memory and the MAC widths, changing the memory sizes and increasing the number

of PEs in the design. In igure 10 the main blocks are the PE array to perform MAC operations in parallel, memory

blocks to hold the weight, feature and the intermediate outputs; individual address generation blocks for the

convolution and fully connected layers and an independent LSTM block (in the case of LSTM-HRL). The top

Table 2. E2HRL diferent network configurations with diferent computation and memory complexity. Each model is trained

for one million Steps

FC-HRL (Environment 1) LSTM-HRL (Environment 2 & 3)

FC1 FC2 FC3 LSTM2 LSTM4 LSTM8 LSTM16

Parameters 11.7 K 30.2 K 94 K 39 K 39 K 39 K 39 K

Memory 45.5 KB 121 KB 376 KB 1.2 MB 1.2 MB 1.2 MB 1.2 MB

Computations 2.8 M 9.3 M 32.3 M 2.4 M 2.4 M 2.4 M 2.4 M

Task Completion 84% 93% 98% 94% & 90% 96% & 92% 96% & 92% 96% & 80%

ACM Trans. Des. Autom. Electron. Syst.

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 11

control logic generates the necessary control signals based on the input coniguration. It generates the controls

for the convolution, fully connected and the LSTM address generation blocks as well. The generated addresses are

passed on to the available on-chip memories to retrieve the corresponding weight and feature values to be passed

into the PE array. The design of the PE has been done in such a way that it can perform one MAC operation

per clock cycle. The MAC values outputted from the PE arrays is stored in the feature memory as input to the

layer that follows after the current computation. The top control logic also accepts a hyper-parameter K. By

maintaining an internal k-counter and comparing the two values it keeps track of when the FC/LSTM branch has

to be run. The output of this branch is written in the last section of the feature map which allows saving the

previous FC/LSTM output until it is re-run. The architecture for the LSTM block is presented in the igure 10.

The main blocks in the designed hardware include:

• Convolution: The convolution block allows to perform the 2D convolution operations through repeated

MAC operations. The control unit generates the necessary control signals to enable the blocks. The

convolution address generator generates the addresses according to the tiling scheme explained in Fig.12(c),

where a single input channel is selected and convoluted with multiple ilters parallelly. Once the MACs

have the N parallel data values from the Weight and the data memories, it performs the MACs in parallel

and stores the results sequentially in the Image embedding memory.

• Fully Connected: The operations performed are similar to that of Convolution. The top control logic

generates the necessary control signals, the address generator passes the addresses to the memories, which

are fetched into the PE-array. MAC results are stored back into the appropriate memory depending on the

hyper-parameter values.

• LSTM: This is the module on the branch that is executed depending on the hyper-parameter k. Simplifying

equations 1 - 4, we can observe that it aims at implementing matrix vector multiplication. Therefore, by

the concatenation of the kernel and the recurrent kernel weights into two memories the memory footprint

can be minimized. From the Fig.10, we can notice the lstm module is composed of two MAC modules and

memories. The memories hold the kernel, recurrent kernel weights, biases and cell-state data respectively.

Additionally, the module also preforms Hard Tanh and Hard Sigmoid activations.

Nvidia Jetson TX2 Xilinx Artix-7

Fig. 9. Common Of-the-Shelf edge platforms

ACM Trans. Des. Autom. Electron. Syst.

12 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

Fig. 10. Block diagram of the proposed E2HRL hardware architecture which consists of Convolution, LSTM and Fully

Connected layers. As shown in 5, for K-1 number of operations the design runs through a sequence of Convolutions and

Fully Connected layers, for the K’th round the design utilizes an additional Fully Connected layer (in case of FC-HRL) or the

LSTM layer (in case of LSTM-HRL)

• Memory: The memory modules on the hardware is mainly divided among the weight, feature, image

embedding and the subgoal memories. For both the designs, i.e., FC-HRL and the LSTM-HRL modules, the

input sizes are 40x30x3. TheWeight Memory is used to hold all the weights needed for the convolution, fully

connected and the LSTM layers. The Feature Map memory is designed to keep a maximum intermediate

features (i.e., the largest feature map in the convolution layer). The LSTM layer additionally, also has

dedicated memories to hold the kernel values, recurrent kernel vales, the bias vales and the cell state.

Contents from these memories are read into the MAC modules in accordance with the control signals

received from the LSTM control logic. Additionally, the top Weight Memory is halved and replicated each

time the number of PEs doubles, this allows for convenient data sharing for the tiling scheme.

ACM Trans. Des. Autom. Electron. Syst.

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 13

[Wxi]
[Wxf]

[Wxg]
[Wxo]

[Wh(t-1)i]
[Wh(t-1)f]

[Wh(t-1)g]
[Wh(t-1)o]

xt

h(t-1)

Wxi xt

Wh(t-1)i h(t-1)

Wxf xt
Wxo xt
Wxg xt

Wh(t-1)f h(t-1)
Wh(t-1)o h(t-1)
Wh(t-1)g h(t-1)

bi
bf
bo
bg

Activation
(hard_sigmoid/

hard_tanh)

it

ft

ot

gt

Fig. 11. Concatenation of equation 1-4 for eficient hardware implementation

According to [11], at a particular time step t , the computation inside the LSTM unit is done as per the following

equations:

it = siдmoid (Wxi xt +Whiht−1 + bi) (1)

ft = siдmoid (Wxf xt +Whf ht−1 + bf) (2)

ot = siдmoid (Wxoxt +Whoht−1 + bo) (3)

дt = tanh(Wxдxt +Whдht−1 + bд) (4)

ct = ft

⊙
ct−1 + it

⊙
дt (5)

ht = tanh(ct)
⊙

ot (6)

where
⊙

is the element-wise multiplication.Wxi ,Wxf ,Wxo ,Wxд are the kernel weights andWhi ,Whf ,Who ,Whд

are the recurrent kernel weights, it is input gate, ft is forget gate, ot is output gate, дt is block input gate, ct is

cell state and ht is LSTM output.

Analyzing equations equations 1 - 4 we can conclude that it aims to implement matrix vector multiplication.

Hence, by concatenating the kernel and the recurrent kernel weights into two memories as shown in igure 11

the memory allocation can be minimized. This allows eicient hardware implementation as well. The LSTM block

consists of two MAC modules accompanied by more arithmetic logic and additional memories. The memories

hold kernel and recurrent kernel weights, biases and cell-state data respectively. It also performs Hard Tanh and

Hard Sigmoid activations dynamically.

Originally, LSTM uses sigmoid and tanh as activation functions as we can see from equations 1 - 6. As both

of these functions are non-linear, hardware implementation is complex than other activation functions such as

ReLU. In order to reduce the hardware complexity, we have used hard sigmoid and hard tanh deined by the

following equations:

hardtanh(x) =





−1, x < −1

x , −1 ≤ x ≤ 1

1, x > 1

(7)

hardsiдmoid (x) =





0, x < −2.5

0.2 × x + 0.5, −2.5 ≤ x ≤ 2.5

1, x > 2.5

(8)

Figure 12 shows the basic methods for tiling in convolution. In igure 12 (a) (input channel tiling), a single

feature map is convoluted collaterally by multiple input feature map channels. In igure 12 (b) (image patch tiling),

the input feature map is divided into smaller sections and is convoluted parallelly. Finally, in igure 12 (c) (output

channel tiling), a single input channel is selected and is convoluted with multiple ilters parallelly. From [43] we

can conclude the best throughput and best parallel memory access and computation is achieved in the output

tiling scheme. The Convolution implemented here follows this output tiling scheme. This is achieved by reading

N values from the feature map memory while reading the number of PE times N number of Weight values. N

values from the PEs are concatenated and stored as input for the upcoming operation.

ACM Trans. Des. Autom. Electron. Syst.

14 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

Fig. 12. (a) Input channel tiling (b) Image patch tiling (c) Output channel tiling Examination of various parallel tiling

procedures for convolutional layers. Output channel tiling has the least memory communication conflict and hence chosen

as tiling scheme for proposed hardware

We implemented E2HRL hardware on low-power Xilinx Artix-7 FPGA to measure its performance. Hardware

is designed to be conigurable with diferent hyper-parameters to meet custom application requirements such as

low power consumption or high throughput. Parameters include the number of processing elements (PE), ilter

shapes, number of ilters in the convolutional layers, sizes of the dense layers that are conigurable to engage

maximum parallel processing ability or utilize the least possible hardware resources. The hardware consists

of three main units: (1) Convolution block for performing Convolution operation. (2) Fully Connected block

that implements the dense layer functionality or an LSTM block to implement the LSTM operations (3) on-chip

memory which stores image embedding and subgoal vector. The convolution block operates with a multiplier

embedded within it. Along with that, there are separate memory blocks for saving weights and feature maps. The

input data is fed to the convolution block to calculate the valid convolution of the input using a multiplication

unit (MU) and an adder with ReLu activation logic. Strides of two in each direction replaced the time-consuming

max-pooling operation. Following the convolutional layers, the irst full-connected layer reads the data from the

image embedding memory and operates using one multiplier-adder, and a few registers. The address low and

control unit generates memory addresses depending on the layer functionality of either convolution, dense or

LSTM. Later, the subgoal vector generated by the Fully Connected/LSTM layer is concatenated with the output of

the convolution layer, and form the input of the inal Fully Connected layer with Softmax activation to produce

proper action. The output of this layer is the action generated by the agent to navigate toward the relevant task

within the environment. The control unit manages the data low through diferent parts of the hardware. 32-bit

ixed-point number format is used for representing the data inside the hardware.

6.2 Xilinx Artix-7 implementation results

As already discussed, the hardware architecture is written in Verilog HDL and is conigurable for the desired

number of PEs, data and memory widths. Table 3 shows the FPGA implementation results for the E2HRL hardware

on the Artix-7 board obtained from the Xilinx Vivado Design Suite. The results illustrates FPGA utilization,

latency, power, energy and performance for the design while varying the number of PEs from 1 through 8 at

100MHz operating frequency. The peak performance of the design using its best coniguration (i.e. at 100MHz

with 8PEs) is 6.4GOPS. The design with this coniguration achieves an average performance of 4GOPS for the

FC-HRL model while achieving 1 GOPS for the LSTM-HRL model. The energy eiciency peaks at 11.4GOPS/W

for the 8 PE design at 100MHz for the FC-HRL and 3GOPS/W for the LSTM-HRL.

Figure13 (right) shows the power consumed for increasing performance when the design is running at 100Mhz.

For the FC-HRL model (blue) the performance reaches 4 GOPS at 8 PE, 100 MHz while consuming 348mW

power. Similarly, for the LSTM-HRL (green) the performance reaches 1GOPS at 8PE, 100MHz while consuming

389 mW power. The aim of this hardware is to implement it on embedded devices. Hence, we can say that the

required deadline to meet is 30 fps, the average number of frames an embedded video camera can generate. All

conigurations in Table 3 meet this deadline of 33.34ms comfortably. In igure 13 (left) the impact of increasing the

ACM Trans. Des. Autom. Electron. Syst.

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 15

Table 3. The implementation results of proposed E2HRL hardware on Xilinx Artix 7 FPGA. The results are obtained, at a

clock frequency of 100 MHz, and the required latency to reach target 30 FPS is 33.34 ms.

Model

Conig.
#PE LUT BRAM DSPs

Power

(mW)

Latency

(ms)

Energy

(mJ)

Performance

(GOPS)

Energy Eiciency

(GOPS/W)

FC

HRL

1 1249 52 11 295 5.15 1.5 0.5 1.7

2 1797 52 15 308 2.67 0.9 1 3

4 2236 52 23 322 1.47 0.5 2 6.2

8 3186 52 39 348 0.9 0.3 4 11.4

LSTM HRL

1 2485 54 26 336 6.4 2.1 0.4 1.1

2 3033 54 30 349 4.1 1.4 0.6 1.7

4 3472 54 38 363 2.85 1 0.8 2.2

8 4422 54 54 389 2.3 0.8 1 3

number of PEs on energy when the design is running to meet the deadline of 30fps is represented. As the number

of PEs is increased the energy drops rapidly initially and gradually saturates. At 8PE the energy consumed is

4.5 mJ for the FC-HRL model and 4.9 mJ for the LSTM-HRL model. Additionally, igure 14 shows the power

usage breakdown for the FC-HRL and the LSTM-HRL models implemented on Artix-7 FPGA. The igure shows

the breakdown w.r.t the static and dynamic power consumption. The breakdown for the dynamic power is

represented as well. From the igure, we can observe that the power consumed by the block-RAMs consume 52%

and 46% for the FC-HRL and the LSTM-HRL models respectively. The signal power for the FC and the LSTM HRL

models is 15% and 18%.

6.3 Nvidia Jetson TX2 Implementation Results

The architecture is designed to be lexibly deployable for general-purpose devices, allowing the developed machine

learning models to be implemented on computing machines ranging from front-end edge devices to back-end

computer servers. At least two hardware-level characteristics are assigned to all deep neural network models:

model size and amount of computing operations per inference, all of which are upper-bounded by the platform

resources they deploy to, or by the inference deadline. Both the hardware resource constraints and the diagnostic

delay can satisfy the implementation targets while adding all the components of the framework together.

1 2 4 8

#PE

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

E
n
e
rg

y
 (

m
J
)

FC

HRL

LSTM

HRL
20Mhz

12.5Mhz

9Mhz

7Mhz

15.6Mhz

8Mhz

4.4Mhz

2.7Mhz

250 300 350 400

Power (mW)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
e
rf

o
rm

a
n
c
e
 (

G
O

P
S

) FC

HRL

LSTM

HRL

1PE 1PE

2PE

4PE

8PE

2PE
4PE

8PE

Fig. 13. Impact of the increasing number of PEs on Energy (let) when running the design to meet a deadline of 30fps. Power

and performance trade of for the FC and LSTM HRL models (right)

ACM Trans. Des. Autom. Electron. Syst.

16 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

Fig. 14. Power consumption breakdown of the FC-HRL and LSTM HRL hardware architecture on Artix-7 FPGA. The figure

shows the breakdown w.r.t the static and dynamic power consumption. It can be observed that the power consumed by the

block-RAMs (BRAMs), 52% and 46% for the FC-HRL and the LSTM-HRL models respectively, are the major portion of the

consumed power.

Table 4. Deploying the model to commercial of-the-shelf devices including a dual-core Denver CPU, a quad-core ARM A57

CPU, and a combination of ARM CPU + Pascal GPU from the NVIDIA TX2 board

Model

Conig.

TX2

Conig.

CPU Freq.

(MHz)

CPU Power

(mW)

Latency

(ms)

Performance

(GFLOP/s)

Energy

(mJ)

Energy Eiciency

(GFLOP/s/W)

FC

HRL

Denver CPU
345 1465 6.0 1.5 8.8 1

2035 1598 7.7 1.6 15.9 1

Arm A57 CPU
345 383 21.1 0.4 8.0 1

2035 1303 5.6 1.7 7.2 1.3

LSTM

HRL

Denver CPU
345 1340 9.8 0.2 13.1 0.1

2035 2070 7.9 0.3 16.3 0.1

Arm A57 CPU
345 383 27.5 0.08 10.5 0.2

2035 1303 5.7 0.4 7.4 0.3

The trained models obtained from the previous Section are deployed on two mobile CPUs including Denver

(dual-core) and ARM-Cortex A57 (quad-core) implementation with diferent frequency settings. The Nvidia Jetson

TX2 development board, which has precise onboard power calculation, was used to perform all of the settings. We

evaluated two diferent conigurations, one with dual-core Denver CPU and another with quad-core ARM CPU.

Table 4 shows the real-time implementation results in terms of latency, power, energy consumption and energy

eiciency for diferent models. Latency was minimum 10ms for both the CPU-alone conigurations when they

were running at their maximum clock frequency of 2035 MHz. The most energy eiciency was achieved when

quad-core Arm CPU was running alone at its maximum frequency which is 1.3 GFLOP/s/W when only fully

connected layers were used in the subgoal module and 0.3 GFLOP/s/W when LSTM layers were used along with

fully connected layers in the subgoal module. However, as the model is too small, the CPUs are underutilized.

Moreover, small models do not beneited from heterogeneous platform such as GPU, therefor, GPU acceleration

is not helping for the proposed models.

ACM Trans. Des. Autom. Electron. Syst.

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 17

Table 5. Comparison of the E2HRL hardware implementation results with similar existing works

[10] [13] [39] [44] [41] FC-HRL LSTM-HRL

Application

Image

Classiication

(CIFAR)

Physical

Activity

Monitoring

Image

Classiication

(CIFAR)

Image

Classiication

(CIFAR)

RL RL RL

Platform
FPGA

Zynq

FPGA

Artix7

FPGA

Zynq

FPGA

Zynq

FPGA

Zynq

FPGA

Artix7

FPGA

Artix7

Input Dimension 32x32x3 64x40x1 32x32x3 32x32x3 5x1 40x30x3 40x30x3

Precision 16-bit 16-bit 16-bit 32-bit 32-bit 32-bit 32-bit

Freq (MHz) 180 100 100 100 125 100 100

Throughput (fps) 35.7 491 46.7 63.5 18.8 1110 435

Perf (GOPS) 0.94 1.6 1.23 1.67 NR 4 1

Power (mW) >17587 175 2944 1015 NR 348 389

Energy (mJ/frame) >500 0.35 63 33.7 NR 0.3 0.8

Energy Eiciency

(GOPS/W)
<0.05 9.14 0.42 1.65 NR 11.4 3

6.4 Discussion

In recent years, many FPGA-based accelerators for convolutional neural network and computer vision applications

have been proposed. This paper proposed an scalable hardware for Reinforcement Learning applications which

takes images as its input. Therefore, we compared our design with previous works that targeted computer

vision and image classiication applications. Implementation results show that compared to [10, 39, 44], our

hardware with an optimum selection of coniguration parameters, number of PEs, and frequency, consume less

energy per classiication and is more energy-eicient. Compared to [10], although our image dataset has a larger

dimension, the results show signiicantly higher throughput and less power consumption, and better energy

eiciency. Additionally, our design shows a performance almost equivalent to [13] peak performance, despite

using signiicantly larger input data. Comparison of this work with the existing FPGA based deep neural network

is summarized in Table 5.

As shown in the Table 3, the best coniguration in terms of energy eiciency is 8 PEs that resulted in an

average of 11.4 and 3 GOP/S/W energy eiciency and 0.3 and 0.8 mJ of energy for each inference for FC-HRL

and LSTM HRL models respectively. Low power conigurations consume 295 and 336 mW power to generates

actions which is suitable for embedded applications that usually has limitted power envelope. Taking real time

vision application constraint into the account[42], all of the conigurations meet the typical 30 FPS constraint

and consume less than 350 mW.

7 CONCLUSION

In this paper, we proposed E2HRL, a cross-layer energy-eicient hardware architecture design method using

hierarchical Reinforcement Learning. We evaluate the performance of the model in several RL environments

with diferent levels of complexity. Our Fully Connected and LSTM based models shows better performance

compared to conventional RL, specially when the environment get more complex. After a systematic model

architecture optimization , the best coniguration is selected to be implemented on hardware. We designed an

scalable hardware architecture which is conigurable with diferent number of PEs and could be implemented to

achieve high throughput or low power consumption. The best coniguration in terms of energy eiciency is 8

PEs that resulted in an average of 11.4 and 3 GOP/S/W energy eiciency and 0.3 and 0.8 mJ of energy for each

ACM Trans. Des. Autom. Electron. Syst.

18 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

inference for FC-HRL and LSTM HRL models respectively. E2HRL low power conigurations consume 295 and

336 mW power to generates each action in the environment.

8 ACKNOWLEDGMENT

This project was sponsored by the U.S. Army Research Laboratory under Cooperative Agreement Number

W911NF-10-2-0022. The views and conclusions contained in this document are those of the authors and should

not be interpreted as representing the oicial policies, either expressed or implied, of the U.S. Government. The

U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding

any copyright notation herein.

REFERENCES

[1] 2020 (accessed October, 2020). NVIDIA Jetson TX2. NVIDIA. https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-tx2/

[2] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular multitask reinforcement learning with policy sketches. In International

Conference on Machine Learning. PMLR, 166ś175.

[3] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The option-critic architecture. In Proceedings of the AAAI Conference on Artiicial

Intelligence, Vol. 31.

[4] Maxime Chevalier-Boisvert. 2018. gym-miniworld environment for OpenAI Gym. https://github.com/maximecb/gym-miniworld.

[5] Hyungmin Cho, Pyeongseok Oh, Jiyoung Park, Wookeun Jung, and Jaejin Lee. 2019. Fa3c: Fpga-accelerated deep reinforcement learning.

In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems.

499ś513.

[6] Lucileide MD Da Silva, Matheus F Torquato, and Marcelo AC Fernandes. 2018. Parallel implementation of reinforcement learning

q-learning technique for fpga. IEEE Access 7 (2018), 2782ś2798.

[7] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-Speciic Hardware Accelerators. Commun. ACM 63, 7 (June 2020),

48ś57.

[8] Muhammad Mudassir Ejaz, Tong Boon Tang, and Cheng-Kai Lu. 2021. A fast learning approach for autonomous navigation using a

deep reinforcement learning method. Electronics Letters 57, 2 (2021), 50ś53.

[9] Sunil Gandhi, Tim Oates, Tinoosh Mohsenin, and Nicholas R Waytowich. 2019. Learning Behaviors from a Single Video Demonstration

Using Human Feedback. (2019).

[10] Gopalakrishna Hegde, Nachiappan Ramasamy, Nachiket Kapre, et al. 2016. CafePresso: an optimized library for deep learning on

embedded accelerator-based platforms. In 2016 International Conference on Compliers, Architectures, and Sythesis of Embedded Systems

(CASES). IEEE, 1ś10.

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735ś1780.

[12] Morteza Hosseini, Mohammad Ebrahimabadi, Arnab Neelim Mazumder, Houman Homayoun, and Tinoosh Mohsenin. 2021. A fast

method to ine-tune neural networks for the least energy consumption on fpgas. UMBC Student Collection (2021).

[13] Ali Jafari, Ashwinkumar Ganesan, Chetan Sai Kumar Thalisetty, Varun Sivasubramanian, Tim Oates, and Tinoosh Mohsenin. 2018.

Sensornet: A scalable and low-power deep convolutional neural network for multimodal data classiication. IEEE Transactions on Circuits

and Systems I: Regular Papers 99 (2018), 1ś14.

[14] Mohit Khatwani et al. 2019. A Low Complexity Automated Multi-channel EEG Artifact Detection using EEGNet. In 2019 IEEE EMBS

Conference on Neural Engineering. IEEE.

[15] Changhyeon Kim, Sanghoon Kang, Sungpill Choi, Dongjoo Shin, Youngwoo Kim, and Hoi-Jun Yoo. 2019. An Energy-Eicient Deep

Reinforcement Learning Accelerator With Transposable PE Array and Experience Compression. IEEE Solid-State Circuits Letters 2, 11

(2019), 228ś231.

[16] Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sungpill Choi, Youngwoo Kim, and Hoi-Jun Yoo. 2019. A 2.1 TFLOPS/W mobile deep

RL accelerator with transposable PE array and experience compression. In 2019 IEEE International Solid-State Circuits Conference-(ISSCC).

IEEE, 136ś138.

[17] Nate Kohl and Peter Stone. 2004. Policy gradient reinforcement learning for fast quadrupedal locomotion. In IEEE International Conference

on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, Vol. 3. IEEE, 2619ś2624.

[18] Amey Kulkarni. 2017. Heterogeneous and Scalable Sketch-based Framework for Big Data Acceleration on Low Power Embedded Cores.

Phd Dissertation (February 2017).

[19] Sicheng Li et al. 2015. Fpga acceleration of recurrent neural network based language model. In 2015 IEEE 23rd Annual International

Symposium on Field-Programmable Custom Computing Machines. IEEE, 111ś118.

ACM Trans. Des. Autom. Electron. Syst.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://github.com/maximecb/gym-miniworld

E2HRL: An Energy-Eficient Hardware Accelerator for Hierarchical Deep Reinforcement Learning • 19

[20] Shanshan Liu, Xiaochen Tang, Farzad Niknia, Pedro Reviriego, Weiqiang Liu, Ahmed Louri, and Fabrizio Lombardi. 2021. Stochastic

Dividers for Low Latency Neural Networks. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 10 (2021), 4102ś4115.

[21] N. K. Manjunath, A. Shiri, M. Hosseini, B. Prakash, N. R. Waytowich, and T. Mohsenin. 2021. An Energy Eicient EdgeAI Autoencoder

Accelerator for Reinforcement Learning. IEEE Open Journal of Circuits and Systems 2 (2021), 182ś195. https://doi.org/10.1109/OJCAS.

2020.3043737

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,

Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. Nature 518, 7540 (2015),

529.

[23] Andrew Y Ng et al. 2006. Autonomous inverted helicopter light via reinforcement learning. In Experimental robotics IX. Springer,

363ś372.

[24] Bharat Prakash et al. 2020. Guiding Safe Reinforcement Learning Policies Using Structured Language Constraints. In SafeAI workshop

Thirty-Fourth AAAI Conference on Artiicial Intelligence. AAAI.

[25] Pedro Reviriego, Shanshan Liu, Otmar Ertl, Farzad Niknia, and Fabrizio Lombardi. 2021. Computing the Similarity Estimate Using

Approximate Memory. IEEE Transactions on Emerging Topics in Computing (2021).

[26] Andrei A Rusu et al. 2017. Sim-to-real robot learning from pixels with progressive nets. In Conference on Robot Learning. 262ś270.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv

preprint arXiv:1707.06347 (2017).

[28] Masoud Shahshahani and Dinesh Bhatia. 2021. Resource and Performance Estimation for CNN Models using Machine Learning. In 2021

IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 43ś48.

[29] Masoud Shahshahani, Mohammad Sabri, Bahareh Khabbazan, and Dinesh Bhatia. 2021. An Automated Tool for Implementing Deep

Neural Networks on FPGA. In 2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded

Systems (VLSID). IEEE, 322ś327.

[30] Shengjia Shao, Jason Tsai, Michal Mysior, Wayne Luk, Thomas Chau, Alexander Warren, and Ben Jeppesen. 2018. Towards hardware

accelerated reinforcement learning for application-speciic robotic control. In 2018 IEEE 29th International Conference on Application-

speciic Systems, Architectures and Processors (ASAP). IEEE, 1ś8.

[31] Aidin Shiri, Arnab Neelim Mazumder, Bharat Prakash, Houman Homayoun, Nicholas R Waytowich, and Tinoosh Mohsenin. 2021. A

Hardware Accelerator for Language Guided Reinforcement Learning. IEEE Design & Test (2021).

[32] Aidin Shiri, Arnab Neelim Mazumder, Bharat Prakash, Nitheesh Kumar Manjunath, Houman Homayoun, Avesta Sasan, Nicholas R

Waytowich, and Tinoosh Mohsenin. 2020. Energy-Eicient Hardware for Language Guided Reinforcement Learning. In Proceedings of

the 2020 on Great Lakes Symposium on VLSI. 131ś136.

[33] David Silver et al. 2017. Mastering the game of go without human knowledge. nature 550, 7676 (2017), 354ś359.

[34] Satinder Singh et al. 2002. Optimizing dialogue management with reinforcement learning: Experiments with the NJFun system. Journal

of Artiicial Intelligence Research 16 (2002), 105ś133.

[35] Jiang Su, Jianxiong Liu, David B Thomas, and Peter YK Cheung. 2017. Neural network based reinforcement learning acceleration on

fpga platforms. ACM SIGARCH Computer Architecture News 44, 4 (2017), 68ś73.

[36] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement learning. Vol. 2. MIT press Cambridge.

[37] Mineto Tsukada, Masaaki Kondo, and Hiroki Matsutani. 2020. A neural network-based on-device learning anomaly detector for edge

devices. IEEE Trans. Comput. 69, 7 (2020), 1027ś1044.

[38] Eric Tzeng et al. 2020. Adapting deep visuomotor representations with weak pairwise constraints. In Algorithmic Foundations of Robotics

XII. Springer, 688ś703.

[39] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. 2016. DeepBurning: Automatic Generation of FPGA-Based Learning

Accelerators for the Neural Network Family. In Proceedings of the 53rd Annual Design Automation Conference (Austin, Texas) (DAC ’16).

Association for Computing Machinery, New York, NY, USA, Article 110, 6 pages. https://doi.org/10.1145/2897937.2898003

[40] Hirohisa Watanabe, Mineto Tsukada, and Hiroki Matsutani. 2020. An FPGA-Based On-Device Reinforcement Learning Approach using

Online Sequential Learning. arXiv preprint arXiv:2005.04646 (2020).

[41] Hirohisa Watanabe, Mineto Tsukada, and Hiroki Matsutani. 2021. An FPGA-Based on-device reinforcement learning approach using

online sequential learning. In 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 96ś103.

[42] Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F Donelson Smith, James H Anderson, and Jan-Michael Frahm. 2019. Re-thinking

CNN frameworks for time-sensitive autonomous-driving applications: Addressing an industrial challenge. In 2019 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS). IEEE, 305ś317.

[43] Chen Zhang et al. 2015. Optimizing fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the 2015

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 161ś170.

[44] Guanwen Zhong, Akshat Dubey, Cheng Tan, and Tulika Mitra. 2019. Synergy: An HW/SW Framework for High Throughput CNNs on

Embedded Heterogeneous SoC. ACM Trans. Embed. Comput. Syst. 18, 2, Article 13 (March 2019), 23 pages. https://doi.org/10.1145/3301278

ACM Trans. Des. Autom. Electron. Syst.

https://doi.org/10.1109/OJCAS.2020.3043737
https://doi.org/10.1109/OJCAS.2020.3043737
https://doi.org/10.1145/2897937.2898003
https://doi.org/10.1145/3301278

20 • Aidin Shiri, Utej Kallakuri, Hasib-Al Rashid, Bharat Prakash, Nicholas R. Waytowich, Tim Oates, and Tinoosh Mohsenin

[45] Yuke Zhu et al. 2017. Target-driven visual navigation in indoor scenes using deep reinforcement learning. In 2017 IEEE international

conference on robotics and automation (ICRA). IEEE, 3357ś3364.

ACM Trans. Des. Autom. Electron. Syst.

	Abstract
	1 Introduction
	2 Related Works
	3 Background
	3.1 Deep Reinforcement Learning
	3.2 Hierarchical Reinforcement Learning
	3.3 Environmental Setup

	4 Proposed System Architecture
	4.1 E2HRL Architecture
	4.2 Training the Subgoal and Action Modules

	5 E2HRL Neural Network Optimization for Energy Efficiency
	6 E2HRL HARDWARE ARCHITECTURE DESIGN, IMPLEMENTATION and ANALYSIS
	6.1 Hardware Architecture Design
	6.2 Xilinx Artix-7 implementation results
	6.3 Nvidia Jetson TX2 Implementation Results
	6.4 Discussion

	7 Conclusion
	8 Acknowledgment
	References

