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eep neural net-
works (DNNs) are 

compute-inten-
sive nonl inear 

m a t h e m a t i c a l 
functions that employ matrix/ten-
sor operators at their core to identify 
temporal and/or spatial correlations 
within input data. Common tech-
niques, such as pruning, quantiza-
tion, and compact model design, 
have been proposed by researchers 
and extensively utilized by develop-
ers to reduce the computation and 
bulky size of DNNs. 

Under the category of com-
pact model design, cyclic sparsely 
connected (CSC) architectures [1] 
are structurally sparsified graphs 
that can be used to effectively com-
press DNNs as an alternative to 
pruning methods with the advan-
tage of imposing less of a memory 
footprint. CSC architectures have a 
memory/computation complexity of 

( )O logN N  that can be used as an 
overlay for a fully connected (FC) 
of ( ),O N 2  where N is the number of 
input–output (I/O) nodes given an 
equally sized FC layer. 

Throughout this article, we focus 
on the complexity of FC layers and 
how CSC architectures can be used as 
a compact overlay for them in DNNs.  
In the end, we briefly remark on how 
CSC architectures can be used for 
compact convolution layers, too. 

Motivation and Background

Pruning Versus Structured Sparsity
Despite their effectiveness, pruning 
methods result in the irregularity of 
the pattern of nonzero weights in the 
pruned model of a neural network, 
necessitating an additional index-
ing. Thus, their compressed model 
has more parameters than the sheer 
number of nonzero weights, and their 
implementation is deteriorated by the 
model decompression. 

As an example, our experiments 
on the NVIDIA TX2 GPU at a clock 
rate of 1.3 GHz indicates that a ma-
trix–vector multiplication using a ma-
trix of size 16,384 by 16,384 can be 
implemented by the NVIDIA CuBLAS 
library, which is a GPU-accelerated 
implementation library of the basic 
linear algebra subroutines (BLAS), 
with a performance of approximate-
ly 11.4 giga operations per second 
(GOPS), whereas the implementation 
of the same matrix with 95% zero val-
ues compressed with the compressed 
sparse row (CSR) storage format can be 
executed using the CuSPARSE library, 
which is a GPU-accelerated implemen-
tation library for sparse matrices, with 
a performance of approximately 3.9 
GOPS that merely operates over the 5% 
nonzero values. 
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Despite the fact that CuSPARSE 
can implement the latter problem 
6.8 times faster than the CuBLAS, its 
advantage is gained by the existence 
of 20 times fewer operations, yet its 
degraded performance is caused by 
the decompressing algorithm applied 
to the matrix compressed by the CSR 
format. In structured sparsity, on the 
other hand, indexing nonzero values 
is eliminated, and the implementation 
can be handled as high performance 
as dense matrices.

Low-Bit-Width Neural Networks
When quantization and pruning meth-
ods are used in tandem, unlike the 
DNN weights and activations, the ex-
tra indexing memory imposed by the 
pruning method is not quantizable, 
and, therefore, the extra indexing 
memory might be intolerable in re-
source-bound hardware that employs 
low bit width, such as binary-/ternary-
weight neural networks. Pruning such 
neural networks can result in a larger 
model size as compared to their un-
compressed models.

For instance, if a ternary-weight 
16,384-by-16,384 matrix with 90% 
zero values is compressed with a co-
ordinate format, it requires 97 MB of 
storage (dedicating 1 and 28 b to the 
nonzero value and its index, respec-
tively), whereas its uncompressed 
model requires 67 MB (dedicating 2 b 
per matrix weight). The second moti-
vation of devising a CSC architecture 
is to develop and employ structurally 
compact models that require no index-
ing for low-precision neural networks.

Problem Statement  
and Formulation
Throughout this work, we use the italic 
lowercase letter x to represent genera-
tor polynomials (e.g., ( ) ),p x x x1 2= + +  
italic capital letters (e.g., N) for integer 
values, and bold uppercase letters for 
matrices (e.g., W) and vectors (e.g., X). 
We use italic lowercase letters in brack-
ets for the elements of a matrix or a 
vector (e.g., W[i, j]).

Inspired by the butterfly diagrams 
of the radix-2 fast Fourier transform 
(FFT), we seek SC layers composed 

of a unidirectional sequence of lay-
ers: an Input layer, L 1-  layers in be-
tween referred to as support layers, 
and an Output layer. We denote the 
first (Input) and last (Output) layers 
by capitalizing their first letters. All 
consecutive layers in the graph are 
connected to each other via edges 
(synapses). We call this graph homo-
geneous if the size of every layer is N 
nodes and its intermediate connectiv-
ity is such that the fan-out of every 
node in every layer excluding the Out-
put layer as well as the fan-in of ev-
ery layer excluding the Input layer is 
exactly F. Therefore, the total number 
of edges, E, in this graph is equal to

	 .E NFL= � (1)

For every layer in the graph, we de-
fine an adjacency matrix, A, whose 
length and width are equal to the 
input and output sizes of the layer, 
respectively (N in this statement) 
and whose elements A[i,  j] indicate 
the number of edges that connect 
the input node i to the output node 
j. Therefore, NF out of N 2  elements 
of the adjacency matrix of every sup-
port layer in our problem statement 
are ones, and the rest are zeros, in-
dicating a sparsity of /F N  for the 
support layer. We then define a merit 
of connectivity, C, and constrain the 
graph to provide C and only C paths 
between every pair of nodes chosen 
arbitrarily from the graph Input and 
Output layers. For this homogeneous 
graph, one can show

	 .F NCL = � (2)

Proof
Starting from the first layer, every 
neuron from the input layer has F pos-
sibilities in every forward hop through 
L layers to reach to the output layer 
nodes. Thus, NF L  paths exist in total. 

Also, between every Input/Output pair 
exist C paths; therefore, in total there 
are CN 2  paths. Thus, .F NCL =

The objective of homogeneity is to 
provide a basis where every arbitrary 
node in the graph is equally exploited, 
every arbitrary pair of nodes from the 
Input and Output layers are equally 
connected, the flux through the sup-
port layers is fairly equal, and the rank 
of the transforming matrix has the 
potential to remain full. This founda-
tion is proposed as an overlay and re-
placement for FC layers and defined 
such that an FC layer of size N by N is 
concluded as a special case in which 

,F N=  ,L 1=  and .C 1=  Combining (1) 
and (2), a logarithmic relationship be-
tween the number of edges and size of 
the layers is inferred as

	 ( ),logE NF NCF= � (3)

where E is the number of edges that 
corresponds to the number of non-
zero elements of the L layers and 
governs the number of multiply–ac-
cumulate (MAC) operations in the 
graph. As an example, given F 2=  
and ,C 1=  (2) and (3) infer logL N2=  
and logE N N2 ,2=  which is the case 
in radix-2 butterfly diagrams. Fig-
ure 1(a)–(e) depicts an FC layer, the 
problem statement, and a hetero-
geneous and two homogeneous SC 
graphs, respectively.

I/O Adjustment
To replace an FC of Input size NI  
and Output size NO  with an SC that 
has a different value for N, we tile 
and truncate only the Input and 
Output layers of the SC to match 
them to those of the FC layer. To 
adjust the Input layer to an input 
vector of size ,NI  we remove rows 
from the bottom of the adjacency 
matrix if N NI1  (truncation), or 

In structured sparsity, on the other hand, 
indexing nonzero values is eliminated, and 
the implementation can be handled as high 
performance as dense matrices.
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we recursively copy from the first 
consecutive rows of the adjacency 
matrix and add them to its bottom 
if N NI2  (tiling) until its number of 
rows is equal to .NI

For the Output layer to be ad-
justed to an output of size ,NO  we 
manipulate the columns of the last 
adjacency matrix similarly. By doing 
so, the connectivity between the ad-
justed Input and Output layers still 
remains C, but the fan-in of the layer 
following the adjusted Input and the 
fan-out of the layer preceding the ad-
justed Output layers deviate from F. 
For an SC  with parameters N, F, L, 
and C as well as adjusted Input and 
Output sizes of, respectively, NI  and 

,NO  the number of edges is

	 ( ) .E NF L N F N F2 I Oadj = - + + � (4)

Compression Rate
Since the adjusted SC graph with Eadj  
synapses is going to substitute an FC 
layer with NI  Input nodes, NO  Output 
nodes, and N NI O  synapses, the com-
pression rate, denoted by ,c  is equal to

	 .E
N NI O

adj
c = � (5)

Clearly, c  should be smaller than 
one to indicate compression. It can 
also be considered as the average 
number of synapses from the SC that 
contribute to forming every synapse 
from the equivalent FC. If the SC is 
homogeneous, each of its synapses 
equally contributes to the formation 
of every synapse from the equivalent 
FC layer. For an FC, ,1c =  indicating 
no compression and that all connec-
tions are independent. For a ho-
mogeneous SC, /( ( )),logN F NCFc =  
which is the maximum given C 1=  
and ,F e=  where e is Napier’s con-
stant ( . ).2 718.  For an SC with ad-
justed I/O, the largest value for c  
is given by the smallest ,Eadj  which 
is derived for L 2=  and ,F 1=  that 
results in ( )N NI O

1 1 1
mostc = +- - -  and is 

equivalent to a rank-one FC layer.

Solution to the Problem Statement
There is no unique solution for the 
graphs that meet the problem statement. 
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We show that circulant matrices gen-
erated from generator polynomials, as 
in cyclic error-correcting codes, give a 
set of solutions for the bi-adjacency 
matrices of the layers that satisfy all 
of the requisites in our problem state-
ment. From here on, we call these 
graphs CSC architectures.

Suppose the bi-adjacency matrix 
Al  ( )l L0 1# # -  of every factor-
ized layer l in our CSC graph has a 
generator polynomial ( )p xl  that has 
F terms, which generates a cyclic bi-
adjacency matrix of block length N. It 
can be shown that the product of the 
L bi-adjacency matrices attributed 
to the L layers is a matrix ,AT  where 

( , )i jAT  represents the number of 
paths between the Input node i and 
Output node j of the CSC graph. 

In the problem statement, the 
connectivity should be equal to C 
for all arbitrary pairs of Input and 
Output nodes, and, thus, ,CA JT =  
where J is an N-by-N all-one matrix. 
The all-C matrix AT  can be attribut-
ed to another generator polynomial 

( ) ,p x C xT i
N i

0
1R= =
-  which constructs 

a cyclic matrix as follows: the first 
row of the matrix corresponds to 
the coefficients of the polynomial—
represented as big-endian in this 
article—and, then, every next row 
is a cyclic right shift of its previous 
row. The cyclic bi-adjacency matri-
ces in this article are not ideals, as 
in ideal cyclic codes, and might have 
nondistinctive rows. We provide two 
different factorization sets of ( ),p xT  
connectivity equal to one (CSCI) and 
layers equal to two (CSCII). 

CSCI
If ,C 1=  and F, L, and N are such that 

,N F L=  then ( )p x xT i
N i

0
1R= =
-  can be 

factorized as follows:

	

( )

( ) , .

x p x

p x x D F.

i

i

N
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l
D i

i
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0
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0
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0

1
l

=

= =

=

-

=

-

=

-

Z

[

\

]
]]

]]

%/

/
� (6)

By assigning ( )p xl  as the genera-
tor polynomial of the factorized 
layer l, the CSC layers of the graph 
are completely defined. Dl  is the 

dilation parameter that indicates 
the distance between elements of 
value one in the first row of the 
bi-adjacency matrix of layer l. It 
also represents the dilation between 
the fanned-out edges in its corre-
sponding layer. For small values of 
F near Napier’s constant (e.g., two 
or three) and, consequently, more 
layers (e.g., log N2  or ),log N3  the 
least number of synapses results 
but at the expense of elongating the 
graph, which, by itself, will increase 
the memory communication during 
hardware implementation. 

Figure 1(d) shows a CSCI graph 
with three layers and generator poly-
nomial ( )p x xl

j
j

2
0
12 l

R= =
-  for the layer l. 

For F 2=  and ,C 1=  the numbers of 
edges and MAC operations are equal 
to ,logN N2 2  which makes the com-
putation complexity ( ).O logN N2  
We evaluate LeNet-300-100, which is 
an early neural network proposed by 
Yann LeCun, on MNIST, which is a data 
set of handwritten digits, by replacing 
FC layers with CSCI.

CSCII
If ,L 2=  and F, C, and N are integers to 
satisfy ,NC F 2=  then ( )p x C xT i

N i
0
1R= =
-  

can be factorized as follows:

	

( ). ( ) ( )

( ) ,

( ) , .

modC x p x p x x

p x x D
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By assigning ( )p x0  and ( )p x1  to the 
first and second layers of the graph, re-
spectively, the CSCII graph is defined. 
In CSCII graphs, ,E N NC2=  which 
declares compression given /C N 41  
and a computation of ( )O N N .

Figure 1(e) shows a CSCII graph 
with C = 2 and generator polynomial 

( )p x xl j
j2

0
14 l

R= =
-  for layer l. In the 

“CSC Architectures for FC Layers” 
section, we evaluate replacing FC 
layers of AlexNet, which is a popular 
neural network proposed by Alex 
Krizhevsky, with CSCII architectures.

CSC Architectures for FC Layers
In this section, we denote the com-
putation of weighted matrices 
trained using a CSC architecture. 
We then explain a bottom-up al-
gorithm to seek appropriate CSC 
architectures. For simplicity, we ig-
nore the term bias in all equations 
in this section and assume the num-
bers of nodes in the I/O of the FC 
layers are all equal to N. As a result, 
vectors/matrices in this section are 

,Y IRN!  ,W IRN N! #  .X IRN!  If lay-
ers are not equally sized, we adjust 
their I/O according to the “I/O Ad-
justment” section.

A standard FC layer is represent-
able with a dense weight matrix W 
whose operation on an input vector X 
is equivalent to a matrix–vector mul-
tiplication that generates a vector Y, 
subject to

	 [ ] ( )[ ] [ , ] [ ],i i i j jY WX W X
j

N

0

1

= =
=

-

/ � (8)

which is a computation of ).O(N 2  If 
W is factorizable into L matrices, or, 
correspondingly, if a cascade of L CSC 
layers with linear activations as well 
as parameters N and F are weighted to 
equate a factorizable FC layer, then the 
equivalent .W WT l

L
l0

1P= =
-  Because of 

the associative property of matrix–ma-
trix multiplication, the computation of 
W XT  can start from the rightmost ma-
trix–vector multiplication and propa-
gate to the leftmost matrix. As such, 

The second motivation of devising a CSC 
architecture is to develop and employ 
structurally compact models that require no 
indexing for low-precision neural networks.
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the operation between an incoming 
input vector Xl  with the lth layer that 
has a weight matrix Wl  with hyperpa-
rameters F and Dl  results in an output 
vector Yl  with elements calculated as 

[ ] [ , ( ) ]

[( ) ],

mod

mod

i i i jD N

i jD N

Y W

X

l l
j

F

l

l l

0

1

#

= +

+
=

-

/
�
(9)

which inherently skips the zero values 
in Wl  by taking only the nonzero val-
ues that are dilated Dl  elements apart. 
Thus, the computation is of ( )O NF  for 
one single W Xl  and of ( ( ))O logNF NCF  
for ( ) ,X XW WT l

L
l0

1P= =
-  which corre-

sponds to a cascade of L homogeneous 
weighted CSC layers with connectivity 
C and fan-out F operating on input vec-
tor X.

For every CSC weight matrix ,Wl  we 
define a compressed format ,W IRl

N F! #t  
which is an N-by-F matrix that contains 
only NF nonzero entries of ,Wl  with the 
following rearrangement:

	 [ , ] [ , ( ) ].modi j i i jD NW Wl l l= +t �(10)

As a consequence of this, (9) can be 
altered as

[ ] [ , ] [( ) ],modi i j i jD NY XWl l l
j

F

l
0

1

= +
=

-
t/

� (11)

to which we refer as a cyclic dilated 
matrix–vector multiplication for a 
CSC layer. For F N=  and D 1=  and 
given a new rearrangement of a 
dense Wl  into a compressed format 

,Wl
t  (11) corresponds to (8), revealing 

a novel approach to computation in 
standard matrix–vector multiplica-
tions using cyclic dilated matrix–vec-
tor multiplication.

Bottom-Up Training
The DNN model with FC layers is 
trained first, and a reference ac-

curacy FCm  is obtained. Then, the 
FC is replaced with an adjusted CSC 
architecture, starting from the most 
compressed CSC architecture and 
directed toward compression reduc-
tion. With no strict definition, we 
consider that the most compressed 
CSC architecture is given by small 
values for F (e.g., two, three, and 
four) if adopting a CSCI architecture 
and by C 1=  if adopting a CSCII ar-
chitecture. The experiments begin 
by targeting the bulky layers of a 
DNN. In each experiment, if the accu-
racy CCSm  is e  less than ,FCm  the pro-
cedure is terminated, and the CSC 
model is accepted. If no CSC layer 
replacement satisfies the accuracy 
loss, the original layer is restored. 
The criterion e  is chosen to be 2% in 
all experiments of this article.

After training the CSC layers em-
bedded in the DNN, every weight 
matrix Wi  from layer i has nonzero 
weights located at corresponding 
nonzero elements of its adjacency 
matrix .Ai  The weighted CSC lay-
ers, which have substituted one FC 
layer, transform the Input to the Out-
put linearly, given linear activation 
for support layers, and can be com-
posed into an equivalent FC layer with 

.W WT
L
i i0

1P= =
-  It is axiomatic that an 

arbitrary FC layer with a weight matrix 
WT  cannot be losslessly decomposed 
into CSC layers that have fewer syn-
apses in total. However, since training 
does not usually produce a concrete 
solution for ,WT  we use the back-
propagation algorithm to learn good 
weights for the CSC layers.

Training Experiments
As depicted in Figure 2, we replace 
the FC layers of LeNet-300-100 and 
AlexNet with CSCI and CSCII layers 
and fine-tune them in 50 epochs. For 
AlexNet, the pretrained weights 

obtained from the baseline model are 
frozen for the convolution layers, and 
only the dense layers are retrained. 
Tables 1 and 2 show the compres-
sion and accuracy of the selected 
CSC configurations for the two DNNs 
in this work and compare them with 
related nonstructural pruning meth-
ods from the literature. It is notewor-
thy that, in all nonstructural pruning 
methods, there exists another implicit 
memory space for storing nonzero 
weight indexes. Thus, if every non-
zero weight requires an index with the 
same number of bits, then the actual 
compression in nonstructural pruning 
methods is approximately half the re-
ported rate.

CSC for Convolution Layers
CSC architectures can be used for con-
volution layers as well. Similar to the 
scalar values that represent weighted 
synapses and I/O nodes of an FC lay-
er, a traditional 2D convolution layer 
can be viewed as an FC graph, as in 
Figure  1(a), in which every synapse 
and I/O node represent a 2D kernel 
and channel, respectively. Thus, ev-
ery output node is a 2D channel that 
results from summing over all of its 
connecting kernels operating on their 
connected input channels.

With that perspective, each of 
the CSC graphs in Figure 1(c)–(e) 
can accommodate a combination of 
3 3#  and 1 1#  (or ,3 1#  ,31#  and 

)1 1#  kernels to approximate a tra-
ditional 2D convolution with 3 3#  
kernels. In [5], CSC architectures 
are used to compress convolution 
layers of an AlexNet, resulting in 
a model compressed by seven and 
three times and in size and compu-
tation, respectively.

Hardware

Accelerator Architecture
Similar to GPUs that are engineered 
to accelerate matrix operations, 
we design a hardware, referred to 
as the CSC accelerator proces-
sor (CSC-AP), to efficiently implement 
(11), which performs a cyclic dilated 
matrix–vector multiplication, i.e., 

Using a total of four MAC units to perform 
32 MAC operations in eight clock cycles indicates 
that the design meets the maximum achievable 
performance with the available resources.
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Our design, briefly depicted in Fig-
ure  3 and described in the Verilog 
hardware description language, com-
prises three main blocks:

■■ an array of processing engines 
(PEs) that perform MAC operations 
and accommodate a compressed 
weight matrix Wt  [(10)] partitioned 
in weight memory units

■■ a partitioned input memory that 
stores intermediate input feature 
map (IFMAP) data Xl

■■ a CSC-based router that imple-
ments the modular arithmetic 
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FIGURE 2: Configurations of the (a) LeNet-300-100 with FC layers, (b) LeNet-300-100 with CSCI layers, (c) AlexNet with FC layers, and (d) 
AlexNet with CSCII layers. For AlexNet, we use pretrained weights for its convolution layers and have them frozen when training on CSC 
configurations.
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of the cyclic dilated matrix–vector 
multiplication and links the array 
of PEs to the array of subbanks in 
the IFMAP memory with a high in-
ternal memory bandwidth. 

Each PE also incorporates another 
static random-access memory that 
stores output feature map (OFMAP) Yl  
in partitions. The compressed format 
Wl
t  given a CSC layer and its IFMAP 

X, are partitioned and evenly dis-
tributed between the number of PEs 
weight and number of PEs input fmap 
memory subbanks, respectively; i.e., 
given a W IRl

N F! #t  the NF parameters 
of Wl
t  and N parameters of the fmap 

are equally partitioned and stored in 

the number of PEs weight and number 
of PEs input fmap subbanks, respec-
tively. Thus, each of the PEs is desig-
nated to compute 1/(number of PEs) 
of the total computation attributed to 
the layer and should have direct ac-
cess to one and only one partitioned 
weight memory at all times as well as 
be provided with access to each and 
every number of PEs memory subbank 
at different computation cycles.

High-Bandwidth Router Adopting 
Cyclic Architectures
To effectively tile the computation for 
the layer and link the individual in-
put fmap memory subbanks with the 

PEs, we design a router that adopts 
a cyclic architecture that essentially 
implements the modulo operator 
existing in (11). The cyclic router is 
composed of switches that are con-
trolled by a state machine driven 
with the CSC layer’s hyperparameters 
to provide a one-to-one cyclic link 
between IFMAP  subbanks and MAC 
units from the PEs. 

Figure 4 reflects the idea of tiled 
computation by illustrating the op-
eration between an eight-by-eight 
CSC matrix ( ,N 8=  ,F 4=  )D 2=  
and a vector of size eight, using dis-
tributed IFMAP, OFMAP, and weight 
memory units that are interlinked 
using a fast router. The hardware is 
configured with four two-word in-
put subbanks, four PEs (with 1 MAC 
unit), four eight-word weights, and 
four two-word output subbanks. The 
total computation for this example is 
equal to 32 MAC operations, which is 
carried out in eight clock cycles us-
ing a router with switches that takes 
advantage of the cyclic structure and 
instantly links the computing re-
sources to the required data. Using a 
total of four MAC units to perform 32 
MAC operations in eight clock cycles 
indicates that the design meets the 
maximum achievable performance 
with the available resources.

Configuration and Fabrication
The CSC-AP hardware was configured 
to have a data width of 8 b with 
16 PEs each incorporating 1 MAC unit, 
1 kB of weight memory and 512 B of 
Input and 512 B of Output memory, as 
illustrated in Figure 3. The configured 
hardware was fabricated using Taiwan 
Semiconductor Manufacturing Compa-
ny CMOS technology in 65 nm on a die 
area of 7 mm .2  In total, the hardware 
has 16  kB of availability for weight 
memory, 8 kB for the IFMAP, and 8 kB 
for the OFMAP.

For the router, we adopted a CSC 
structure with the parameters L 2=  
stages, N 16=  switches per stage, 
and F 4=  degrees of switches, 
which provides an internal band-
width of 1.6 GB/s at a clock rate of 
100 MHz. Figure 5(a) shows the post 

TABLE 1. COMPRESSING LENET-300-100 BY MEANS OF REPLACING  
FC WITH CSCI LAYERS COMPARED TO RELATED PRUNING METHODS.

LAYER 
PARAMETERS 
(BASELINE)

PRUNING 
[2]

PRUNING 
[3] 

CSCI 
(COMPRESSION c)

Index memory required? Yes Yes No 

FC1 236,000 8% 1.8% 1.5% (84 times) 

FC2 30,000 9% 1.8% 4.4% (27 times) 

FC3 1,000 26% 5.5% 100% (one time) 

Total 267,000 8% (12 
times)

1.8% (56 
times)

2.2% (46 times) 

Top-1 
accuracy 

98.4% 98.4% 98% 97.2% 

TABLE 2. COMPRESSING ALEXNET BY MEANS OF REPLACING FC  
WITH CSCII LAYERS COMPARED TO RELATED PRUNING METHODS.

LAYER 
PARAMETERS 
(BASELINE)

PRUNING 
[2] 

PRUNING 
[4] 

CSCII 
(COMPRESSION c)

Index memory required? Yes Yes No 

All convolution 
layers 

2.5 million 36% 25% 100% (N/A) 

FC1 38 million 9% 7% 2% (42 times) 

FC2 17 million 9% 7% 6% (17 times) 

FC3 4 million 25% 18% 33% (three times) 

Total 61 million 11% (nine 
times)

8% (12 
times)

10% (10 times) 

Top-5 accuracy 79.1% 80.2% 80.4% 77.6% 

N/A: not applicable.

CSC architectures can effectively compress the 
traditional FC layers of neural networks on par 
with pruning methods.
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place-and-route physical design of 
the actual fabricated die that incor-
porates the CSC-AP, and Figure 5(b) 
shows the die (packaged) along 
with a U.S. quarter coin for a scaled  
comparison.

Evaluation
Figure 5(c) shows the evaluation set-
up to measure the characteristics of 
the chip given various voltage and 

frequency ranges. The setup includes 
a dual-tracking supply voltage to 
power up the chip with core (0.62–1 V)  
and I/O voltages (1.8 V), a VC707 
evaluation board that sends test sig-
nals through a field-programmable 
gate array mezzanine card cable 
with a high pin count interfaced with 
the chip and monitors the response 
sent back from the chip. An oscil-
loscope and a multimeter are also 

used for the verification and precise 
measurements of signals. The peak 
performance and efficiency in a well-
engineered accelerator with the num-
ber of MAC units at clock rate freq are 
calculated as

#

.

Performance 2 MAC 

Efficiency Power
Performance

freqtrue

true
true

# #=

=

� (12)
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FIGURE 3: An accelerator hardware design to implement cyclic dilated matrix–vector multiplication configurable with the number of PEs and 
dataflow bit width, highlighting the array of PEs and IFMAP memory units interlinked with a high-bandwidth router. IFMAP: input feature map; 
Mem: memory; OFMAP: output feature map; PE: processing engine; R: router.
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The Performancetrue  indicates the 
number of multiplication or addi-
tion operations an accelerator is 
able to carry out in a second, and 
we measure it in terms of GOPS. The 
Efficiencytrue  indicates the number 
of multiplication or addition opera-
tions an accelerator is able to per-
form per unit of energy, i.e., joules, 
and we measure it in terms of giga 
operations per joule (GOPJ) or tera 
operations per joule (TOPJ). Note 
that these metrics are attributed to 
an accelerator that performs only 
the workload it is given to regard-
less of the skipped computation, 
hence denoting the metrics with the 
subscription true. 

On the other hand, for an accelera-
tor that implements a model whose 
computation is reduced by c times 
(i.e., ( )/ ,1c c-  the computation of 
which is reduced using techniques 
such as zero-skipping), an equivalent 
performance and efficiency can be ac-
counted for the accelerator that would 
take the zero computations into ac-
count using the following relations:

.
Performance Performance

Efficiency Efficiency
eq true

eq true

#

#

c

c

=

=
� (13)

For example, the matrix–vector mul-
tiplication, as illustrated in the Fig-
ure 4, requires 64 multiplications, 
32 of which are zeros that can be 
skipped. The matrix can be packed 
in a compressed form according to 
(10) with two times fewer param-
eters that include only nonzero 
values, and the matrix–vector mul-
tiplication can be converted to a di-
lated matrix–vector multiplication 
that includes two times fewer opera-
tions. When a hardware implements 
such a matrix–vector multiplication, 
it can perform only nonzero multi-
plications in eight cycles. Thus, its 
true performance can be computed 
as 32/8 multiplications per cycle. 
However, when the skipped zero 
multiplications are also accounted 
for, the equivalent performance 
is 64/8 multiplications per cycle, 
which is two (compression rate) 
times the true performance.
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Figure 6(a) shows the power con-
sumption of the CSC-AP versus clock 
frequency for core voltages of 0.62 
and 1 V. Within a range of the clock 
frequency of 100 MHz, the core volt-
age 0.62 V is the minimum operation-
al voltage that delivers the minimum 
power dissipation and highest effi-
ciency. Thus, we adopt this voltage 
for sub-100-MHz frequency ranges 
for low-power, high-efficiency applica-
tions. Figure 6(b) shows the perfor-
mance and efficiency of the CSC-AP 
that corresponds to (12) given the 
power consumption at a core voltage 
of 0.62 V.

With 16 MAC units operating at 
100 MHz, the peak performance of 
the accelerator reaches 3.2 GOPS. 
The power dissipation and, con-
sequently, true efficiency of the 
chip at a core voltage of 0.62 V 
are approximately 74.3 mW and 43 
( . / . )3 2 0 074=  GOPJ. The true per-
formance and power consumption 
of the hardware are agnostic toward 
the compression rate of the CSC 
layer it implements. In other words, 
the chip implements a CSC layer 
with the same actual performance 
and power consumption regard-
less of what N, F, or D are in (11). 
As a result, given a CSC layer with 

compression 1 841 1c  (as in the 
compressed LeNet-300-100), the 
equivalent performance and effi-
ciency of the chip range between 
3.2  GOPS and 43 GOPJ for an FC 
layer where 1c =  and 268.8 GOPS 
and 3.6  TOPJ for a highly com-
pressed CSC layer where ,84c =  
respectively.

Related Work and Comparison
Deng et al. [6] proposed PermDNN, 
which is an approach to customiz-
ing sparse weight matrices with a 
diagonalization scheme, for which 
they designed a 32-PE (256-multipli-
er) accelerator with 16-b precision 
dataflow synthesized in 28 nm and 
operating at 1.2 GHz. At first glance, 
the CSC layers look similar to the 
permuted diagonal matrices in the 
PermDNN. However, in PermDNN, a 
weight matrix is chunked into many 
smaller diagonalized matrices, and 
the connectivity of consecutive lay-

ers as a tweakable parameter is not 
defined, whereas a CSC layer uses 
one continuous diagonalized (cy-
clic) weight matrix per layer, the 
cascade of a few of which guaran-
tees the full connectivity between 
alternate layers.

CIRCNN [7] is another similar 
work to the CSC layers in which a 
weight matrix in a DNN is parti-
tioned into K-by-K submatrices, 
each of which, due to their circu-
lant structure, can be defined with 
only K scalars, thus compressing 
the model by K times. The convolu-
tion operation of the block-circulant 
matrices can be efficiently per-
formed using FFT, elementwise ma-
trix multiplication, and inverse FFT 
operations. The authors of CIRCNN 
also proposed an accelerator whose 
synthesis results in 45 nm and 
200 MHz and shows an equivalent ef-
ficiency of nearly 10 TOPJ. Despite 
its significant complexity reduction 
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FIGURE 5: (a) The post place-and-route physical design and actual fabricated die of the CSC-AP. (b) The packaged die compared to the size 
of a U.S. quarter coin. (d) The test, verification, and measurement setup, highlighting a dual-tracking voltage supply to power up the chip 
mounted on a printed circuit board (PCB). A VC707 platform is used to drive the chip with test benches and signals using a field-program-
mable gate array mezzanine card (FMC) high-pin-count cable; a multimeter and an oscilloscope are employed for signal monitoring and 
measurement. 

CSC architectures, similar to butterfly networks, 
can be categorized as one of the high-bandwidth 
communication networks for parallel system 
interconnections.
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and efficiency, however, CIRCNN 
has two drawbacks: 1) the computa-
tion needs to be carried out in the 
realm of complex numbers and 2) 
the method cannot be used in tan-
dem with extreme quantization, 
as the precision of the quantized 
weight matrices do not propagate in 

their transformation into the Fou-
rier domain.

We compare the performance, 
power, and efficiency of a CSC-AP 
with a Pascal-family GPU from the 
NVIDIA Jetson TX2 system on chip, 
which is a commercial off-the-shelf 
(COTS) device optimized for deep 

learning applications, and with 
three related application-specific ICs 
(ASICs) that accelerate processing 
neural networks in the same fabrica-
tion technology, i.e., 65 nm. We note 
that comparing the performance and 
efficiency of hardware accelerators 
with different data-width formats 
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(e.g., floating point, 16-b, 8-b, and bi-
narized) may not be completely fair; 
however, it is the standard practice. 

COTS Devices
The NVIDIA Pascal-family GPU is 
loaded with 8 GB of memory and 256 
cores that can operate at a clock fre-
quency of 1.3 GHz and deliver up to 
1.33 teraflops for high-performance 
computing workloads, like matrix–ma-
trix multiplication using developed 
libraries, such as cuBLAS. Such per-
formance is only very high for large 
workloads, and it degrades when the 
workload is small. CuSPARSE is anoth-
er useful library that performs sparse 
matrix operations, such as a pruned 
matrix–vector multiplication, and it 
outperforms cuBLAS if the matrix is 
sufficiently sparsified. 

We conduct a set of experiments 
of matrix–vector multiplication over 
the GPU using both the cuBLAS and 
cuSPARSE libraries as well as over the 
CSC-AP for a CSC matrix of size 1,024 
by 1,024 with various compression 
rates. We measure the performance 
and efficiency of these implementa-
tions only after the data are loaded 
to the on-chip memory of the two 
devices. Figure 7(a) shows the true 
efficiency of the CSC-AP at 100 MHz 
(0.62 V) and compares it with that of 
the GPU at 1.3 GHz using either of the 
two NVIDIA Compute Unified Device 
Architecture libraries over the given 
workload with various compression 
rates. Figure 7(b) plots the equiva-
lent efficiency of the experiments by 
taking the compression rate into ac-
count according to (13). 

According to this experiment, the 
performance and efficiency of cuBLAS 
is constant for variously pruned ma-
trices, and, since it is agnostic to the 
sparsity of its workload, its equivalent 
performance and efficiency are the 
same as its actual ones. On the other 
hand, the equivalent performance and 
efficiency of both the CSC-AP and cuS-
PARSE libraries increase proportional-
ly to the compression rate of the CSC 
matrix. Consequently, for a matrix–
vector multiplication with N = 1,024, 
the efficiency of the CSC-AP ranges be-

tween 43 and 2,756 GOPJ compared to 
that of the cuSPARSE, ranging between 
2 and 66 floating point operations per 
joule (FLOPJ) and efficiency of cuBLAS, 
which is constant 4.2 FLOPJ for com-
pression rates ranging between one 
and 64 times.

ASICs
Table 3 summarizes three accelera-
tors fabricated in 65-nm technology 
that process neural network layers 
and compares them to the CSC-AP. 
The main purpose of this table is to 
compare the related work and review 
the potentials that the 65-nm tech-
nology brings about, given different 
approaches and architectures. 

Eyeriss [8] is an accelerator for 
deep convolutional neural networks 
optimized for energy efficiency and 
16-b models. It encompasses a wide 
range of neural network layers; how-
ever, it delivers the same amount of 
efficiency given pruned DNN layers, 
whereas the efficiency of the CSC-AP 
can approach 3.6 TOPJ for highly com-
pressed CSC layers. 

A unified neural processing unit 
(UNPU) [9] is a unified DNN accel-
erator that supports variable weight 
precision ranging from 1 to 16 b for 
the efficient implementation of DNNs 
within a mobile environment. While 
the CSC-AP consumes two times less 
silicon area, it can consume as little 
as 5.6 mW at low-frequency settings, 

which is comparable to the UNPU’s 
low power consumption of 3.2 mW at 
the same frequency range. 

Lastly, STICKER [10] is an 8-b ac-
celerator that explores a neural net-
work’s sparsity both in weights and 
the fmap data and can deliver up to 
62.1 TOPJ, a high amount of equiva-
lent efficiency, which is accounted 
for by an fmap and neural network 
layer both with 10% sparsity. Com-
pared to STICKER, the CSC-AP has 
16 times fewer multipliers and five 
times less on-chip memory, thus de-
livering approximately 10–20 times 
less efficiency yet consuming ap-
proximately four times less power.

Conclusions
CSC architectures are structurally 
sparse graphs that follow a circular  
arrangement in their design and have 
a density of ( )O logN N ; they can be 
used to reduce the memory/computa-
tion complexity of FC layers of ( )O N 2  
where N is the number of nodes in a 
given layer. CSC architectures can ef-
fectively compress the traditional FC 
layers of neural networks on par with 
pruning methods, and then can be im-
plemented using a hardware-friendly 
style consuming minimal hardware re-
sources and power as well as provid-
ing high energy efficiency. 

The CSC-AP is a chip with a die size 
of 7 mm2 fabricated in 65 nm that can 
process neural networks compressed 

TABLE 3. A COMPARISON WITH RELATED WORK.

EYERISS [8] UNPU [9] STICKER [10] CSC-AP

Layer type CONV CONV + FC CONV + FC FC 

Sparsity mode Dense Dense Sparse CSC 

Tech (nm) 65 65 65 65 

Die area (mm2) 12.25 16 7.8 7

Data width (b) 16 1–16 8 8 

Multiplier count 168 13,824 256 16 

On-chi buffer (kB) 108 256 170 32 

Supply voltage (V) 0.82–1.17 0.63–1.1 0.67–1 0.62–1 

Power (mW) 235–332 3.2–297 20.5–284.4 5.6–74.3 

Frequency (MHz) 100–250 5–200 20–200 1–100 

Peak efficiency (TOPJ) 0.31 3.08 0.41–62.1 0.04–3.61

CONV: convolutional.
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with CSC architectures and can deliver 
up to 3.6 TOPJ which is on par with 
related accelerators fabricated in the 
same technology. Moreover, CSC archi-
tectures, similar to butterfly networks, 
can be categorized as one of the high-
bandwidth communication networks 
for parallel system interconnections. 
Such interconnection is used in the 
design of a high-bandwidth router em-
bedded into the CSC-AP.
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