
1943-0582/21©2021IEEE64 FALL 2021 IEEE SOLID-STATE CIRCUITS MAGAZINE

eep neural net-
works (DNNs) are

compute-inten-
sive nonl inear

m a t h e m a t i c a l
functions that employ matrix/ten-
sor operators at their core to identify
temporal and/or spatial correlations
within input data. Common tech-
niques, such as pruning, quantiza-
tion, and compact model design,
have been proposed by researchers
and extensively utilized by develop-
ers to reduce the computation and
bulky size of DNNs.

Under the category of com-
pact model design, cyclic sparsely
connected (CSC) architectures [1]
are structurally sparsified graphs
that can be used to effectively com-
press DNNs as an alternative to
pruning methods with the advan-
tage of imposing less of a memory
footprint. CSC architectures have a
memory/computation complexity of

()O logN N that can be used as an
overlay for a fully connected (FC)
of (),O N 2 where N is the number of
input–output (I/O) nodes given an
equally sized FC layer.

Throughout this article, we focus
on the complexity of FC layers and
how CSC architectures can be used as
a compact overlay for them in DNNs.
In the end, we briefly remark on how
CSC architectures can be used for
compact convolution layers, too.

Motivation and Background

Pruning Versus Structured Sparsity
Despite their effectiveness, pruning
methods result in the irregularity of
the pattern of nonzero weights in the
pruned model of a neural network,
necessitating an additional index-
ing. Thus, their compressed model
has more parameters than the sheer
number of nonzero weights, and their
implementation is deteriorated by the
model decompression.

As an example, our experiments
on the NVIDIA TX2 GPU at a clock
rate of 1.3 GHz indicates that a ma-
trix–vector multiplication using a ma-
trix of size 16,384 by 16,384 can be
implemented by the NVIDIA CuBLAS
library, which is a GPU-accelerated
implementation library of the basic
linear algebra subroutines (BLAS),
with a performance of approximate-
ly 11.4 giga operations per second
(GOPS), whereas the implementation
of the same matrix with 95% zero val-
ues compressed with the compressed
sparse row (CSR) storage format can be
executed using the CuSPARSE library,
which is a GPU-accelerated implemen-
tation library for sparse matrices, with
a performance of approximately 3.9
GOPS that merely operates over the 5%
nonzero values.

From foundations
to applications

Morteza Hosseini, Nitheesh Manjunath, Uttej Kallakuri,
 Hamid Mahmoodi, Houman Homayoun, and Tinoosh Mohsenin

Cyclic Sparsely
Connected Architectures

Digital Object Identifier 10.1109/MSSC.2021.3111431

Date of current version: 17 November 2021

D

Fully Connected Cyclic Sparsely ConnectedFully Connected Cyclic Sparsely Connected

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 2021 	 65

Despite the fact that CuSPARSE
can implement the latter problem
6.8 times faster than the CuBLAS, its
advantage is gained by the existence
of 20 times fewer operations, yet its
degraded performance is caused by
the decompressing algorithm applied
to the matrix compressed by the CSR
format. In structured sparsity, on the
other hand, indexing nonzero values
is eliminated, and the implementation
can be handled as high performance
as dense matrices.

Low-Bit-Width Neural Networks
When quantization and pruning meth-
ods are used in tandem, unlike the
DNN weights and activations, the ex-
tra indexing memory imposed by the
pruning method is not quantizable,
and, therefore, the extra indexing
memory might be intolerable in re-
source-bound hardware that employs
low bit width, such as binary-/ternary-
weight neural networks. Pruning such
neural networks can result in a larger
model size as compared to their un-
compressed models.

For instance, if a ternary-weight
16,384-by-16,384 matrix with 90%
zero values is compressed with a co-
ordinate format, it requires 97 MB of
storage (dedicating 1 and 28 b to the
nonzero value and its index, respec-
tively), whereas its uncompressed
model requires 67 MB (dedicating 2 b
per matrix weight). The second moti-
vation of devising a CSC architecture
is to develop and employ structurally
compact models that require no index-
ing for low-precision neural networks.

Problem Statement
and Formulation
Throughout this work, we use the italic
lowercase letter x to represent genera-
tor polynomials (e.g., ()),p x x x1 2= + +
italic capital letters (e.g., N) for integer
values, and bold uppercase letters for
matrices (e.g., W) and vectors (e.g., X).
We use italic lowercase letters in brack-
ets for the elements of a matrix or a
vector (e.g., W[i, j]).

Inspired by the butterfly diagrams
of the radix-2 fast Fourier transform
(FFT), we seek SC layers composed

of a unidirectional sequence of lay-
ers: an Input layer, L 1- layers in be-
tween referred to as support layers,
and an Output layer. We denote the
first (Input) and last (Output) layers
by capitalizing their first letters. All
consecutive layers in the graph are
connected to each other via edges
(synapses). We call this graph homo-
geneous if the size of every layer is N
nodes and its intermediate connectiv-
ity is such that the fan-out of every
node in every layer excluding the Out-
put layer as well as the fan-in of ev-
ery layer excluding the Input layer is
exactly F. Therefore, the total number
of edges, E, in this graph is equal to

	 .E NFL= � (1)

For every layer in the graph, we de-
fine an adjacency matrix, A, whose
length and width are equal to the
input and output sizes of the layer,
respectively (N in this statement)
and whose elements A[i, j] indicate
the number of edges that connect
the input node i to the output node
j. Therefore, NF out of N 2 elements
of the adjacency matrix of every sup-
port layer in our problem statement
are ones, and the rest are zeros, in-
dicating a sparsity of /F N for the
support layer. We then define a merit
of connectivity, C, and constrain the
graph to provide C and only C paths
between every pair of nodes chosen
arbitrarily from the graph Input and
Output layers. For this homogeneous
graph, one can show

	 .F NCL = � (2)

Proof
Starting from the first layer, every
neuron from the input layer has F pos-
sibilities in every forward hop through
L layers to reach to the output layer
nodes. Thus, NF L paths exist in total.

Also, between every Input/Output pair
exist C paths; therefore, in total there
are CN 2 paths. Thus, .F NCL =

The objective of homogeneity is to
provide a basis where every arbitrary
node in the graph is equally exploited,
every arbitrary pair of nodes from the
Input and Output layers are equally
connected, the flux through the sup-
port layers is fairly equal, and the rank
of the transforming matrix has the
potential to remain full. This founda-
tion is proposed as an overlay and re-
placement for FC layers and defined
such that an FC layer of size N by N is
concluded as a special case in which

,F N= ,L 1= and .C 1= Combining (1)
and (2), a logarithmic relationship be-
tween the number of edges and size of
the layers is inferred as

	 (),logE NF NCF= � (3)

where E is the number of edges that
corresponds to the number of non-
zero elements of the L layers and
governs the number of multiply–ac-
cumulate (MAC) operations in the
graph. As an example, given F 2=
and ,C 1= (2) and (3) infer logL N2=
and logE N N2 ,2= which is the case
in radix-2 butterfly diagrams. Fig-
ure 1(a)–(e) depicts an FC layer, the
problem statement, and a hetero-
geneous and two homogeneous SC
graphs, respectively.

I/O Adjustment
To replace an FC of Input size NI
and Output size NO with an SC that
has a different value for N, we tile
and truncate only the Input and
Output layers of the SC to match
them to those of the FC layer. To
adjust the Input layer to an input
vector of size ,NI we remove rows
from the bottom of the adjacency
matrix if N NI1 (truncation), or

In structured sparsity, on the other hand,
indexing nonzero values is eliminated, and
the implementation can be handled as high
performance as dense matrices.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

66	 FALL 2021	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

we recursively copy from the first
consecutive rows of the adjacency
matrix and add them to its bottom
if N NI2 (tiling) until its number of
rows is equal to .NI

For the Output layer to be ad-
justed to an output of size ,NO we
manipulate the columns of the last
adjacency matrix similarly. By doing
so, the connectivity between the ad-
justed Input and Output layers still
remains C, but the fan-in of the layer
following the adjusted Input and the
fan-out of the layer preceding the ad-
justed Output layers deviate from F.
For an SC with parameters N, F, L,
and C as well as adjusted Input and
Output sizes of, respectively, NI and

,NO the number of edges is

	 () .E NF L N F N F2 I Oadj = - + + � (4)

Compression Rate
Since the adjusted SC graph with Eadj
synapses is going to substitute an FC
layer with NI Input nodes, NO Output
nodes, and N NI O synapses, the com-
pression rate, denoted by ,c is equal to

	 .E
N NI O

adj
c = � (5)

Clearly, c should be smaller than
one to indicate compression. It can
also be considered as the average
number of synapses from the SC that
contribute to forming every synapse
from the equivalent FC. If the SC is
homogeneous, each of its synapses
equally contributes to the formation
of every synapse from the equivalent
FC layer. For an FC, ,1c = indicating
no compression and that all connec-
tions are independent. For a ho-
mogeneous SC, /(()),logN F NCFc =
which is the maximum given C 1=
and ,F e= where e is Napier’s con-
stant (.).2 718. For an SC with ad-
justed I/O, the largest value for c
is given by the smallest ,Eadj which
is derived for L 2= and ,F 1= that
results in ()N NI O

1 1 1
mostc = +- - - and is

equivalent to a rank-one FC layer.

Solution to the Problem Statement
There is no unique solution for the
graphs that meet the problem statement.

P
ro

bl
em

S
ta

te
m

en
t

F
ea

tu
re

s:
L

=
 1

N
 N

od
es

C
 =

 1
F

 =
 N

C
 =

 1
N

 =
 F

L

E
 =

 N
2

N
N

od
esF

0

F
0

F
1

F
1

F
L–

1

F
L–

1

F
L–

1
F

0
F

1pa
th

0

pa
th

C
–1

La
ye

r 0
La

ye
r 1

La
ye

r L–
1

F
ea

tu
re

s:
F

ea
tu

re
s:

F
ea

tu
re

s:
F

ea
tu

re
s:

L
La

ye
rs

N
 N

od
es

 p
er

 L
ay

er
C

 P
at

hs
 p

er
 I/

O

F
an

 O
ut

F
an

 O
ut

F
an

 O
ut

Le
m

m
a:

N
C

 =
 Π

F
i

N
C

 =
 F

2

N
C

 =
 Π

F
i

E
 =

 Σ
N

F
i

E
 =

 Σ
N

F
i

A
 F

ew
S

ol
ut

io
ns

E
xa

m
pl

e:

E
xa

m
pl

e:
L

=
 3

N
 =

 8
C

 =
 1

L
=

 3
N

 =
 8

C
 =

 1
F

0
=

 2
F

1
=

 1
F

 =
 2

F
2

=
 4

E
 =

 5
6

E
 =

 4
8

E
xa

m
pl

e:

L
=

 2
N

 =
 8

C
 =

 2
F

 =
 4

E
 =

 6
4

C
on

ne
ct

ed
 to

 th
e

T
op

C
on

ne
ct

ed
 to

 th
e

T
op

C
on

ne
ct

ed
 to

 th
e

T
op

E
 =

 N
F

 lo
gN F

L
=

 2

E
 =

 2
N

N
C

√

(a
)

(b
)

(c
)

(d
)

(e
)

FI
G

U
RE

 1
: E

xp
lo

rin
g

an
 a

rc
hi

te
ct

ur
e

th
at

 a
pp

ro
xi

m
at

es
 a

 w
ei

gh
te

d
de

ns
e

la
ye

r i
nt

o
th

e
fa

ct
or

iz
at

io
n

of
 w

ei
gh

te
d

sp
ar

se
 la

ye
rs

. (
a)

 A
n

FC
 w

ith
 s

iz
e

N
. (

b)
 T

he
 p

ro
bl

em
 s

ta
te

m
en

t h
ig

hl
ig

ht
s

a
di

-
re

ct
ed

 a
cy

cli
c

gr
ap

h
(D

AG
) w

ith
 L

la
ye

rs
, N

 n
od

es
 p

er
 la

ye
r,

eq
ua

lly
 fa

nn
ed

-o
ut

 la
ye

rs
, a

nd
 e

qu
al

ly
 c

on
ne

ct
ed

 n
od

es
 w

ith
 C

 p
at

hs
 b

et
w

ee
n

its
 a

rb
itr

ar
y

I/
O

 n
od

es
. A

 fe
w

 s
ol

ut
io

ns
 o

f t
hi

s
ca

n
be

 a

(c)
 h

et
er

og
en

eo
us

 C
SC

 g
ra

ph
 th

at
 s

at
is

fie
s

th
e

pr
ob

le
m

 s
ta

te
m

en
t,

(d
) h

om
og

en
eo

us
 C

SC
I g

ra
ph

 w
he

re
 C

 =
 1

, a
nd

 (e
) h

om
og

en
eo

us
 C

SC
II

gr
ap

h
w

he
re

 th
e

nu
m

be
r o

f l
ay

er
s

(L)
 is

 tw
o.

 F
or

 a
ll

of
 th

e
DA

G
s,

 b
i-a

dj
ac

en
cy

 m
at

ric
es

 a
t t

he
 b

ot
to

m
 o

f t
he

 fi
gu

re
 h

ig
hl

ig
ht

 th
e

co
nn

ec
tiv

ity
 o

f t
he

 n
od

es
, t

he
 p

ro
du

ct
 o

f w
hi

ch
 re

ve
al

s
th

e
nu

m
be

r o
f p

at
hs

 fo
r a

ll
I/

O
 n

od
es

. G
en

er
at

or
 p

ol
yn

om
ia

ls
 d

ef
in

e
th

e
fo

rm
at

io
n

of
 e

ac
h

gr
ap

h.
 C

SC
I:

a
CS

C
w

ith
 th

e
co

nn
ec

tiv
ity

 e
qu

al
 to

 o
ne

; C
SC

II:
 a

 C
SC

 w
ith

 th
e

la
ye

rs
 e

qu
al

 to
 tw

o.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 2021 	 67

We show that circulant matrices gen-
erated from generator polynomials, as
in cyclic error-correcting codes, give a
set of solutions for the bi-adjacency
matrices of the layers that satisfy all
of the requisites in our problem state-
ment. From here on, we call these
graphs CSC architectures.

Suppose the bi-adjacency matrix
Al ()l L0 1# # - of every factor-
ized layer l in our CSC graph has a
generator polynomial ()p xl that has
F terms, which generates a cyclic bi-
adjacency matrix of block length N. It
can be shown that the product of the
L bi-adjacency matrices attributed
to the L layers is a matrix ,AT where

(,)i jAT represents the number of
paths between the Input node i and
Output node j of the CSC graph.

In the problem statement, the
connectivity should be equal to C
for all arbitrary pairs of Input and
Output nodes, and, thus, ,CA JT =
where J is an N-by-N all-one matrix.
The all-C matrix AT can be attribut-
ed to another generator polynomial

() ,p x C xT i
N i

0
1R= =
- which constructs

a cyclic matrix as follows: the first
row of the matrix corresponds to
the coefficients of the polynomial—
represented as big-endian in this
article—and, then, every next row
is a cyclic right shift of its previous
row. The cyclic bi-adjacency matri-
ces in this article are not ideals, as
in ideal cyclic codes, and might have
nondistinctive rows. We provide two
different factorization sets of (),p xT
connectivity equal to one (CSCI) and
layers equal to two (CSCII).

CSCI
If ,C 1= and F, L, and N are such that

,N F L= then ()p x xT i
N i

0
1R= =
- can be

factorized as follows:

	

()

() , .

x p x

p x x D F.

i

i

N

l
l

L

l
D i

i

F

l
l

0

1

0

1

0

1
l

=

= =

=

-

=

-

=

-

Z

[

\

]
]]

]]

%/

/
� (6)

By assigning ()p xl as the genera-
tor polynomial of the factorized
layer l, the CSC layers of the graph
are completely defined. Dl is the

dilation parameter that indicates
the distance between elements of
value one in the first row of the
bi-adjacency matrix of layer l. It
also represents the dilation between
the fanned-out edges in its corre-
sponding layer. For small values of
F near Napier’s constant (e.g., two
or three) and, consequently, more
layers (e.g., log N2 or),log N3 the
least number of synapses results
but at the expense of elongating the
graph, which, by itself, will increase
the memory communication during
hardware implementation.

Figure 1(d) shows a CSCI graph
with three layers and generator poly-
nomial ()p x xl

j
j

2
0
12 l

R= =
- for the layer l.

For F 2= and ,C 1= the numbers of
edges and MAC operations are equal
to ,logN N2 2 which makes the com-
putation complexity ().O logN N2
We evaluate LeNet-300-100, which is
an early neural network proposed by
Yann LeCun, on MNIST, which is a data
set of handwritten digits, by replacing
FC layers with CSCI.

CSCII
If ,L 2= and F, C, and N are integers to
satisfy ,NC F 2= then ()p x C xT i

N i
0
1R= =
-

can be factorized as follows:

	

(). () ()

() ,

() , .

modC x p x p x x

p x x D

p x x D C
F

1

1.

.

i

i

N
N

D i

i

F

D i

i

F

0

1

0 1

0
0

1

0

1
0

1

1

0

1

= -

= =

= =

=

-

=

-

=

-

Z

[

\

]
]
]
]

]
]
]]

/

/

/

�(7)

By assigning ()p x0 and ()p x1 to the
first and second layers of the graph, re-
spectively, the CSCII graph is defined.
In CSCII graphs, ,E N NC2= which
declares compression given /C N 41
and a computation of ()O N N .

Figure 1(e) shows a CSCII graph
with C = 2 and generator polynomial

()p x xl j
j2

0
14 l

R= =
- for layer l. In the

“CSC Architectures for FC Layers”
section, we evaluate replacing FC
layers of AlexNet, which is a popular
neural network proposed by Alex
Krizhevsky, with CSCII architectures.

CSC Architectures for FC Layers
In this section, we denote the com-
putation of weighted matrices
trained using a CSC architecture.
We then explain a bottom-up al-
gorithm to seek appropriate CSC
architectures. For simplicity, we ig-
nore the term bias in all equations
in this section and assume the num-
bers of nodes in the I/O of the FC
layers are all equal to N. As a result,
vectors/matrices in this section are

,Y IRN! ,W IRN N! # .X IRN! If lay-
ers are not equally sized, we adjust
their I/O according to the “I/O Ad-
justment” section.

A standard FC layer is represent-
able with a dense weight matrix W
whose operation on an input vector X
is equivalent to a matrix–vector mul-
tiplication that generates a vector Y,
subject to

	 [] ()[] [,] [],i i i j jY WX W X
j

N

0

1

= =
=

-

/ � (8)

which is a computation of).O(N 2 If
W is factorizable into L matrices, or,
correspondingly, if a cascade of L CSC
layers with linear activations as well
as parameters N and F are weighted to
equate a factorizable FC layer, then the
equivalent .W WT l

L
l0

1P= =
- Because of

the associative property of matrix–ma-
trix multiplication, the computation of
W XT can start from the rightmost ma-
trix–vector multiplication and propa-
gate to the leftmost matrix. As such,

The second motivation of devising a CSC
architecture is to develop and employ
structurally compact models that require no
indexing for low-precision neural networks.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

68	 FALL 2021	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

the operation between an incoming
input vector Xl with the lth layer that
has a weight matrix Wl with hyperpa-
rameters F and Dl results in an output
vector Yl with elements calculated as

[] [, ()]

[()],

mod

mod

i i i jD N

i jD N

Y W

X

l l
j

F

l

l l

0

1

#

= +

+
=

-

/
�
(9)

which inherently skips the zero values
in Wl by taking only the nonzero val-
ues that are dilated Dl elements apart.
Thus, the computation is of ()O NF for
one single W Xl and of (())O logNF NCF
for () ,X XW WT l

L
l0

1P= =
- which corre-

sponds to a cascade of L homogeneous
weighted CSC layers with connectivity
C and fan-out F operating on input vec-
tor X.

For every CSC weight matrix ,Wl we
define a compressed format ,W IRl

N F! #t
which is an N-by-F matrix that contains
only NF nonzero entries of ,Wl with the
following rearrangement:

	 [,] [, ()].modi j i i jD NW Wl l l= +t �(10)

As a consequence of this, (9) can be
altered as

[] [,] [()],modi i j i jD NY XWl l l
j

F

l
0

1

= +
=

-
t/

� (11)

to which we refer as a cyclic dilated
matrix–vector multiplication for a
CSC layer. For F N= and D 1= and
given a new rearrangement of a
dense Wl into a compressed format

,Wl
t (11) corresponds to (8), revealing

a novel approach to computation in
standard matrix–vector multiplica-
tions using cyclic dilated matrix–vec-
tor multiplication.

Bottom-Up Training
The DNN model with FC layers is
trained first, and a reference ac-

curacy FCm is obtained. Then, the
FC is replaced with an adjusted CSC
architecture, starting from the most
compressed CSC architecture and
directed toward compression reduc-
tion. With no strict definition, we
consider that the most compressed
CSC architecture is given by small
values for F (e.g., two, three, and
four) if adopting a CSCI architecture
and by C 1= if adopting a CSCII ar-
chitecture. The experiments begin
by targeting the bulky layers of a
DNN. In each experiment, if the accu-
racy CCSm is e less than ,FCm the pro-
cedure is terminated, and the CSC
model is accepted. If no CSC layer
replacement satisfies the accuracy
loss, the original layer is restored.
The criterion e is chosen to be 2% in
all experiments of this article.

After training the CSC layers em-
bedded in the DNN, every weight
matrix Wi from layer i has nonzero
weights located at corresponding
nonzero elements of its adjacency
matrix .Ai The weighted CSC lay-
ers, which have substituted one FC
layer, transform the Input to the Out-
put linearly, given linear activation
for support layers, and can be com-
posed into an equivalent FC layer with

.W WT
L
i i0

1P= =
- It is axiomatic that an

arbitrary FC layer with a weight matrix
WT cannot be losslessly decomposed
into CSC layers that have fewer syn-
apses in total. However, since training
does not usually produce a concrete
solution for ,WT we use the back-
propagation algorithm to learn good
weights for the CSC layers.

Training Experiments
As depicted in Figure 2, we replace
the FC layers of LeNet-300-100 and
AlexNet with CSCI and CSCII layers
and fine-tune them in 50 epochs. For
AlexNet, the pretrained weights

obtained from the baseline model are
frozen for the convolution layers, and
only the dense layers are retrained.
Tables 1 and 2 show the compres-
sion and accuracy of the selected
CSC configurations for the two DNNs
in this work and compare them with
related nonstructural pruning meth-
ods from the literature. It is notewor-
thy that, in all nonstructural pruning
methods, there exists another implicit
memory space for storing nonzero
weight indexes. Thus, if every non-
zero weight requires an index with the
same number of bits, then the actual
compression in nonstructural pruning
methods is approximately half the re-
ported rate.

CSC for Convolution Layers
CSC architectures can be used for con-
volution layers as well. Similar to the
scalar values that represent weighted
synapses and I/O nodes of an FC lay-
er, a traditional 2D convolution layer
can be viewed as an FC graph, as in
Figure 1(a), in which every synapse
and I/O node represent a 2D kernel
and channel, respectively. Thus, ev-
ery output node is a 2D channel that
results from summing over all of its
connecting kernels operating on their
connected input channels.

With that perspective, each of
the CSC graphs in Figure 1(c)–(e)
can accommodate a combination of
3 3# and 1 1# (or ,3 1# ,31# and

)1 1# kernels to approximate a tra-
ditional 2D convolution with 3 3#
kernels. In [5], CSC architectures
are used to compress convolution
layers of an AlexNet, resulting in
a model compressed by seven and
three times and in size and compu-
tation, respectively.

Hardware

Accelerator Architecture
Similar to GPUs that are engineered
to accelerate matrix operations,
we design a hardware, referred to
as the CSC accelerator proces-
sor (CSC-AP), to efficiently implement
(11), which performs a cyclic dilated
matrix–vector multiplication, i.e.,

Using a total of four MAC units to perform
32 MAC operations in eight clock cycles indicates
that the design meets the maximum achievable
performance with the available resources.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 2021 	 69

[] [,] [()].modi i j i jD NY W Xll j
F

l l0
1R= +=
- t

Our design, briefly depicted in Fig-
ure 3 and described in the Verilog
hardware description language, com-
prises three main blocks:

■■ an array of processing engines
(PEs) that perform MAC operations
and accommodate a compressed
weight matrix Wt [(10)] partitioned
in weight memory units

■■ a partitioned input memory that
stores intermediate input feature
map (IFMAP) data Xl

■■ a CSC-based router that imple-
ments the modular arithmetic

FC 1 FC 2 FC 3

Parameters: 235,500 + 30,100 + 1,000 = 266,600

CSCI 1 CSCI 2 FC 3

Im
ag

e
N

et

Im
ag

e
N

et

FC 1 FC 2 FC 3Convolution Layers

Parameters: Parameters:

2.5
 m

illio
n

2.
5

m
illi

on

+ + + =
37

.8
 m

illi
on

16
.8

 m
illi

on

 4
.1

 m
illi

on

Frozen Pretrained
Convolution Layers

CSCII 1 CSCII 2 CSCII 3

+
0.

9
m

illi
on

+
1

m
illi

on + =
1.

3
m

illi
on

M
N

IS
T

M
N

IS
T

T
op

-1
 A

cc
ur

ac
y

=
 9

8.
4%

T
op

-5
 A

cc
ur

ac
y

=
 7

9.
1%

T
op

-5
 A

cc
ur

ac
y

=
 7

7.
6%

T
op

-1
 A

cc
ur

ac
y

=
 9

6.
6%

(a) (b)

(c) (d)

Parameters: 2,800 + +1,100 1,000 = 4,900

61
.1

m
illi

on

5.
7

m
illi

on

FIGURE 2: Configurations of the (a) LeNet-300-100 with FC layers, (b) LeNet-300-100 with CSCI layers, (c) AlexNet with FC layers, and (d)
AlexNet with CSCII layers. For AlexNet, we use pretrained weights for its convolution layers and have them frozen when training on CSC
configurations.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

70	 FALL 2021	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

of the cyclic dilated matrix–vector
multiplication and links the array
of PEs to the array of subbanks in
the IFMAP memory with a high in-
ternal memory bandwidth.

Each PE also incorporates another
static random-access memory that
stores output feature map (OFMAP) Yl
in partitions. The compressed format
Wl
t given a CSC layer and its IFMAP

X, are partitioned and evenly dis-
tributed between the number of PEs
weight and number of PEs input fmap
memory subbanks, respectively; i.e.,
given a W IRl

N F! #t the NF parameters
of Wl
t and N parameters of the fmap

are equally partitioned and stored in

the number of PEs weight and number
of PEs input fmap subbanks, respec-
tively. Thus, each of the PEs is desig-
nated to compute 1/(number of PEs)
of the total computation attributed to
the layer and should have direct ac-
cess to one and only one partitioned
weight memory at all times as well as
be provided with access to each and
every number of PEs memory subbank
at different computation cycles.

High-Bandwidth Router Adopting
Cyclic Architectures
To effectively tile the computation for
the layer and link the individual in-
put fmap memory subbanks with the

PEs, we design a router that adopts
a cyclic architecture that essentially
implements the modulo operator
existing in (11). The cyclic router is
composed of switches that are con-
trolled by a state machine driven
with the CSC layer’s hyperparameters
to provide a one-to-one cyclic link
between IFMAP subbanks and MAC
units from the PEs.

Figure 4 reflects the idea of tiled
computation by illustrating the op-
eration between an eight-by-eight
CSC matrix (,N 8= ,F 4=)D 2=
and a vector of size eight, using dis-
tributed IFMAP, OFMAP, and weight
memory units that are interlinked
using a fast router. The hardware is
configured with four two-word in-
put subbanks, four PEs (with 1 MAC
unit), four eight-word weights, and
four two-word output subbanks. The
total computation for this example is
equal to 32 MAC operations, which is
carried out in eight clock cycles us-
ing a router with switches that takes
advantage of the cyclic structure and
instantly links the computing re-
sources to the required data. Using a
total of four MAC units to perform 32
MAC operations in eight clock cycles
indicates that the design meets the
maximum achievable performance
with the available resources.

Configuration and Fabrication
The CSC-AP hardware was configured
to have a data width of 8 b with
16 PEs each incorporating 1 MAC unit,
1 kB of weight memory and 512 B of
Input and 512 B of Output memory, as
illustrated in Figure 3. The configured
hardware was fabricated using Taiwan
Semiconductor Manufacturing Compa-
ny CMOS technology in 65 nm on a die
area of 7 mm .2 In total, the hardware
has 16 kB of availability for weight
memory, 8 kB for the IFMAP, and 8 kB
for the OFMAP.

For the router, we adopted a CSC
structure with the parameters L 2=
stages, N 16= switches per stage,
and F 4= degrees of switches,
which provides an internal band-
width of 1.6 GB/s at a clock rate of
100 MHz. Figure 5(a) shows the post

TABLE 1. COMPRESSING LENET-300-100 BY MEANS OF REPLACING
FC WITH CSCI LAYERS COMPARED TO RELATED PRUNING METHODS.

LAYER
PARAMETERS
(BASELINE)

PRUNING
[2]

PRUNING
[3]

CSCI
(COMPRESSION c)

Index memory required? Yes Yes No

FC1 236,000 8% 1.8% 1.5% (84 times)

FC2 30,000 9% 1.8% 4.4% (27 times)

FC3 1,000 26% 5.5% 100% (one time)

Total 267,000 8% (12
times)

1.8% (56
times)

2.2% (46 times)

Top-1
accuracy

98.4% 98.4% 98% 97.2%

TABLE 2. COMPRESSING ALEXNET BY MEANS OF REPLACING FC
WITH CSCII LAYERS COMPARED TO RELATED PRUNING METHODS.

LAYER
PARAMETERS
(BASELINE)

PRUNING
[2]

PRUNING
[4]

CSCII
(COMPRESSION c)

Index memory required? Yes Yes No

All convolution
layers

2.5 million 36% 25% 100% (N/A)

FC1 38 million 9% 7% 2% (42 times)

FC2 17 million 9% 7% 6% (17 times)

FC3 4 million 25% 18% 33% (three times)

Total 61 million 11% (nine
times)

8% (12
times)

10% (10 times)

Top-5 accuracy 79.1% 80.2% 80.4% 77.6%

N/A: not applicable.

CSC architectures can effectively compress the
traditional FC layers of neural networks on par
with pruning methods.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 2021 	 71

place-and-route physical design of
the actual fabricated die that incor-
porates the CSC-AP, and Figure 5(b)
shows the die (packaged) along
with a U.S. quarter coin for a scaled
comparison.

Evaluation
Figure 5(c) shows the evaluation set-
up to measure the characteristics of
the chip given various voltage and

frequency ranges. The setup includes
a dual-tracking supply voltage to
power up the chip with core (0.62–1 V)
and I/O voltages (1.8 V), a VC707
evaluation board that sends test sig-
nals through a field-programmable
gate array mezzanine card cable
with a high pin count interfaced with
the chip and monitors the response
sent back from the chip. An oscil-
loscope and a multimeter are also

used for the verification and precise
measurements of signals. The peak
performance and efficiency in a well-
engineered accelerator with the num-
ber of MAC units at clock rate freq are
calculated as

#

.

Performance 2 MAC

Efficiency Power
Performance

freqtrue

true
true

#=

=

� (12)

32 b

Partitioned
OFMAP
Memory

Partitioned
Weights
Memory

Partitioned
IFMAP

Memory

...

IFMAP MemoryFast Router Based on the CSC ArchitecturePE Array

PE 1

PE 1

R

R

R

R

R

R

R

R

R

......

.........

...

...

...

...

Fast Router with
Bidirectional Switches

Accumulator

Quantizer
8 b

8 b

8 b

...

1,
02

4
E

nt
rie

s

51
2

E
nt

rie
s

51
2

E
nt

rie
s

...

...

Shift and
Truncate

Mem 1

Mem 2

Mem 16

PE 2

PE 16

FIGURE 3: An accelerator hardware design to implement cyclic dilated matrix–vector multiplication configurable with the number of PEs and
dataflow bit width, highlighting the array of PEs and IFMAP memory units interlinked with a high-bandwidth router. IFMAP: input feature map;
Mem: memory; OFMAP: output feature map; PE: processing engine; R: router.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

72	 FALL 2021	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

The Performancetrue indicates the
number of multiplication or addi-
tion operations an accelerator is
able to carry out in a second, and
we measure it in terms of GOPS. The
Efficiencytrue indicates the number
of multiplication or addition opera-
tions an accelerator is able to per-
form per unit of energy, i.e., joules,
and we measure it in terms of giga
operations per joule (GOPJ) or tera
operations per joule (TOPJ). Note
that these metrics are attributed to
an accelerator that performs only
the workload it is given to regard-
less of the skipped computation,
hence denoting the metrics with the
subscription true.

On the other hand, for an accelera-
tor that implements a model whose
computation is reduced by c times
(i.e., ()/ ,1c c- the computation of
which is reduced using techniques
such as zero-skipping), an equivalent
performance and efficiency can be ac-
counted for the accelerator that would
take the zero computations into ac-
count using the following relations:

.
Performance Performance

Efficiency Efficiency
eq true

eq true

#

#

c

c

=

=
� (13)

For example, the matrix–vector mul-
tiplication, as illustrated in the Fig-
ure 4, requires 64 multiplications,
32 of which are zeros that can be
skipped. The matrix can be packed
in a compressed form according to
(10) with two times fewer param-
eters that include only nonzero
values, and the matrix–vector mul-
tiplication can be converted to a di-
lated matrix–vector multiplication
that includes two times fewer opera-
tions. When a hardware implements
such a matrix–vector multiplication,
it can perform only nonzero multi-
plications in eight cycles. Thus, its
true performance can be computed
as 32/8 multiplications per cycle.
However, when the skipped zero
multiplications are also accounted
for, the equivalent performance
is 64/8 multiplications per cycle,
which is two (compression rate)
times the true performance.

00
0

01
0

02
0

03
0

0
04

0
05

0
06

0
07

11
0

08
0

09
0

10
0

0
15

0
12

0
13

0
14

18
0

19
0

16
0

17
0

0
22

0
23

0
20

0
21

25
0

26
0

27
0

24
0

0
29

0
30

0
31

0
28

PE
1

PE
2

PE
3

PE
4

PE
1

PE
2

PE
3

PE
4

PE
1

PE
2

PE
3

PE
4

PE
1

PE
2

PE
3

PE
4

0 1 2 3 4 5 6 7

0 4 16 36 64 10
0

14
4

19
6

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

2 15 36 65 10
2

14
7 0 29

2 19 52 10
1

16
6

24
7

14
4

22
5

0 1 2 3 4 5 6 7

8 30 60 98 0 22 52 90

2 19 52 10
1

16
6

24
7

14
4

22
5

10 49 11
2

19
9

16
6

26
9

19
6

31
5

0 1 2 3 4 5 6 7

18 49 0 15 38 69 10
8

15
5

10 49 11
2

19
9

16
6

26
9

19
6

31
5

28 98 11
2

21
4

20
4

33
8

30
4

47
0

0 4 16 36 64 10
0

14
4

19
6

0 4 16 36 64 10
0

14
4

19
6

00 01 02 03 04 05 06 07

2 3 4 5 6 7

24 25 26 27 28 29 30 3116 17 18 19 20 21 22 2308 09 10 11 12 13 14 15

00 01 02 03 04 05 06 07

0 1 2 3 4 5 6 7

24 25 26 27 28 29 30 3116 17 18 19 20 21 22 2308 09 10 11 12 13 14 15

00 01 02 03 04 05 06 07

0 1 2 3 4 5 6 7

24 25 26 27 28 29 30 3116 17 18 19 20 21 22 2308 09 10 11 12 13 14 15

00 01 02 03 04 05 06 07

0 1 2 3 4 5 6 7

24 25 26 27 28 29 30 3116 17 18 19 20 21 22 2308 09 10 11 12 13 14 15

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

00
0

01
0

02
0

03
0

0
04

0
05

0
06

0
07

11
0

08
0

09
0

10
0

0
15

0
12

0
13

0
14

18
0

19
0

16
0

17
0

0
22

0
23

0
20

0
21

25
0

26
0

27
0

24
0

0
29

0
30

0
31

0
28

00
0

01
0

02
0

03
0

0
04

0
05

0
06

0
07

11
0

08
0

09
0

10
0

0
15

0
12

0
13

0
14

18
0

19
0

16
0

17
0

0
22

0
23

0
20

0
21

25
0

26
0

27
0

24
0

0
29

0
30

0
31

0
28

00
0

01
0

02
0

03
0

0
04

0
05

0
06

0
07

11
0

08
0

09
0

10
0

0
15

0
12

0
13

0
14

18
0

19
0

16
0

17
0

0
22

0
23

0
20

0
21

25
0

26
0

27
0

24
0

0
29

0
30

0
31

0
28

00
0

01
0

02
0

03
0

0
04

0
05

0
06

0
07

11
0

08
0

09
0

10
0

0
15

0
12

0
13

0
14

18
0

19
0

16
0

17
0

0
22

0
23

0
20

0
21

25
0

26
0

27
0

24
0

0
29

0
30

0
31

0
28

0 1

PE
1

PE
2

PE
3

PE
4

PE
1

PE
2

PE
3

PE
4

PE
1

PE
2

PE
3

PE
4

PE
1

PE
2

PE
3

PE
4

O
F

M
em

O
F

M
em

O
F

M
em

O
F

M
em

PE
1

PE
2

PE
3

PE
4

0 1 2 3 4 5 6 7

28 98 11
2

21
4

20
4

33
8

30
4

47
0

M
A

C
28

/9
8

00 01 02 03 04 05 06 07

28 98

M
A

C
11

2
/2

14

11
2

21
4

M
A

C
20

4
/3

38

20
4

33
8

M
A

C
30

4
/4

70

30
4

47
0

24 25 26 27 28 29 30 3116 17 18 19 20 21 22 2308 09 10 11 12 13 14 15

R R R R

R R R R

R R R R

28 98 11
2

21
4

20
4

33
8

30
4

47
0

O
F

M
em

M
A

C
2

19
M

A
C

0
4

M
A

C
16

36

M
A

C
64

10
0

M
A

C
14

4
19

6

M
A

C
52

10
1

M
A

C
16

6
24

7

M
A

C
14

4
22

5

M
A

C
10

49

M
A

C
11

2
19

9

M
A

C
16

6
26

9

M
A

C
19

6
31

5

M
A

C
28

98

M
A

C
11

2
21

4

M
A

C
20

4
33

8

M
A

C
30

4
47

0

(a
)

(b
)

(c
)

(d
)

(e
)

W
M

em
IF

M
em

H
ig

h
B

an
dw

id
th

R
ou

te
r

W
M

em
IF

M
em

H
ig

h
B

an
dw

id
th

R
ou

te
r

W
M

em
IF

M
em

H
ig

h
B

an
dw

id
th

R
ou

te
r

W
M

em
IF

M
em

H
ig

h
B

an
dw

id
th

R
ou

te
r

W
M

em
IF

M
em

H
ig

h
B

an
dw

id
th

R
ou

te
r

IF
M

em
: I

np
ut

 F
ea

tu
re

 M
em

or
y

O
F

M
em

: O
ut

pu
t F

ea
tu

re
 M

em
or

y

FI
G

U
RE

 4
: T

he
 h

ig
h-

ba
nd

w
id

th
 ro

ut
er

 th
at

 a
do

pt
s

a
CS

C
ar

ch
ite

ct
ur

e
to

 im
pl

em
en

t a
 C

SC
 D

N
N

 la
ye

r,
ill

us
tr

at
ed

 w
ith

 a
 s

im
pl

e
ex

am
pl

e:
 m

ul
tip

lic
at

io
n

be
tw

ee
n

a
cy

cli
c w

ei
gh

t m
at

rix
 w

ith
 F

 =
 4

, D
 =

 2
,

N
 =

 8
, a

nd
 a

 v
ec

to
r w

ith
 s

iz
e

ei
gh

t,
us

in
g

fo
ur

 p
ro

ce
ss

in
g

en
gi

ne
s

an
d

pe
rf

or
m

ed
 in

 e
ig

ht
 cy

cle
s.

 (a
) O

pe
ra

te
 th

e
fir

st
 d

ia
g

(cy
cle

s
1

an
d

5)
. (

b)
 O

pe
ra

te
 th

e
se

co
nd

 d
ia

g
(cy

cle
s

2
an

d
6)

. (
c)

O
pe

ra
te

 th
e

th
ird

 d
ia

g
(cy

cle
s

3
an

d
7)

. (
d)

 O
pe

ra
te

 th
e

fo
ur

th
 d

ia
g

(cy
cle

s
4

an
d

8)
. (

e)
 W

rit
e

ba
ck

 (c
yc

le
s

9
an

d
10

).
Di

ag
: d

ia
go

na
l;

W
M

em
: w

ei
gh

t m
em

or
y.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 2021 	 73

Figure 6(a) shows the power con-
sumption of the CSC-AP versus clock
frequency for core voltages of 0.62
and 1 V. Within a range of the clock
frequency of 100 MHz, the core volt-
age 0.62 V is the minimum operation-
al voltage that delivers the minimum
power dissipation and highest effi-
ciency. Thus, we adopt this voltage
for sub-100-MHz frequency ranges
for low-power, high-efficiency applica-
tions. Figure 6(b) shows the perfor-
mance and efficiency of the CSC-AP
that corresponds to (12) given the
power consumption at a core voltage
of 0.62 V.

With 16 MAC units operating at
100 MHz, the peak performance of
the accelerator reaches 3.2 GOPS.
The power dissipation and, con-
sequently, true efficiency of the
chip at a core voltage of 0.62 V
are approximately 74.3 mW and 43
(. / .)3 2 0 074= GOPJ. The true per-
formance and power consumption
of the hardware are agnostic toward
the compression rate of the CSC
layer it implements. In other words,
the chip implements a CSC layer
with the same actual performance
and power consumption regard-
less of what N, F, or D are in (11).
As a result, given a CSC layer with

compression 1 841 1c (as in the
compressed LeNet-300-100), the
equivalent performance and effi-
ciency of the chip range between
3.2 GOPS and 43 GOPJ for an FC
layer where 1c = and 268.8 GOPS
and 3.6 TOPJ for a highly com-
pressed CSC layer where ,84c =
respectively.

Related Work and Comparison
Deng et al. [6] proposed PermDNN,
which is an approach to customiz-
ing sparse weight matrices with a
diagonalization scheme, for which
they designed a 32-PE (256-multipli-
er) accelerator with 16-b precision
dataflow synthesized in 28 nm and
operating at 1.2 GHz. At first glance,
the CSC layers look similar to the
permuted diagonal matrices in the
PermDNN. However, in PermDNN, a
weight matrix is chunked into many
smaller diagonalized matrices, and
the connectivity of consecutive lay-

ers as a tweakable parameter is not
defined, whereas a CSC layer uses
one continuous diagonalized (cy-
clic) weight matrix per layer, the
cascade of a few of which guaran-
tees the full connectivity between
alternate layers.

CIRCNN [7] is another similar
work to the CSC layers in which a
weight matrix in a DNN is parti-
tioned into K-by-K submatrices,
each of which, due to their circu-
lant structure, can be defined with
only K scalars, thus compressing
the model by K times. The convolu-
tion operation of the block-circulant
matrices can be efficiently per-
formed using FFT, elementwise ma-
trix multiplication, and inverse FFT
operations. The authors of CIRCNN
also proposed an accelerator whose
synthesis results in 45 nm and
200 MHz and shows an equivalent ef-
ficiency of nearly 10 TOPJ. Despite
its significant complexity reduction

Place-and-Route Physical Design U.S. Quarter

Unpackaged

CSC-AP

Packaged Die (Chip)
The Fabricated Die

CSC-AP

Chip + PCB

Core V
Core A

I/O V
I/O A

Scoped Clock

FMC

VC707

Precise
Power3.7 mm

1.
9

m
m

(a) (b) (c)

FIGURE 5: (a) The post place-and-route physical design and actual fabricated die of the CSC-AP. (b) The packaged die compared to the size
of a U.S. quarter coin. (d) The test, verification, and measurement setup, highlighting a dual-tracking voltage supply to power up the chip
mounted on a printed circuit board (PCB). A VC707 platform is used to drive the chip with test benches and signals using a field-program-
mable gate array mezzanine card (FMC) high-pin-count cable; a multimeter and an oscilloscope are employed for signal monitoring and
measurement.

CSC architectures, similar to butterfly networks,
can be categorized as one of the high-bandwidth
communication networks for parallel system
interconnections.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

74	 FALL 2021	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

and efficiency, however, CIRCNN
has two drawbacks: 1) the computa-
tion needs to be carried out in the
realm of complex numbers and 2)
the method cannot be used in tan-
dem with extreme quantization,
as the precision of the quantized
weight matrices do not propagate in

their transformation into the Fou-
rier domain.

We compare the performance,
power, and efficiency of a CSC-AP
with a Pascal-family GPU from the
NVIDIA Jetson TX2 system on chip,
which is a commercial off-the-shelf
(COTS) device optimized for deep

learning applications, and with
three related application-specific ICs
(ASICs) that accelerate processing
neural networks in the same fabrica-
tion technology, i.e., 65 nm. We note
that comparing the performance and
efficiency of hardware accelerators
with different data-width formats

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64

A
ct

ua
l E

ffi
ci

en
cy

 (
G

O
P

S
/W

)

Compression (γ)
1 4 16 64

Compression (γ)
(a) (b)

CSC-AP cuBLAS cuSPARSE

1E+0

1E+1

1E+2

1E+3

1E+4

E
qu

iv
al

en
t E

ffi
ci

en
cy

 (
G

O
P

S
/W

)

FIGURE 7: A comparison of the (a) actual and (b) equivalent efficiencies of the cuBLAS and cuSPARSE libraries on the NVIDIA TX2 GPU with
those of the CSC-AP for a CSC matrix–vector multiplication with N = 1,024, given various compression rates.

4

8

16

32

64

128

1.5625 6.25 25 100

P
ow

er
 (

m
W

)

Clock Frequency (MHz)

Voltage: 0.6 V

Voltage: 1 V

0.05

0.2

0.8

3.2

12.8

51.2

0

10

20

30

40

50

1.5625 6.25 25 100

P
er

fo
rm

an
ce

 (
G

O
P

S
)

E
ffi

ci
en

cy
 (

G
O

P
S

/W
)

Clock Frequency (MHz)

(a) (b)

Actual Efficiency (at 0.6 V)

Actual Performance

FIGURE 6: The (a) power as well as (b) performance and efficiency measurements of the CSC-AP, given a clock frequency ranging from 1 to
100 MHz.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 2021 	 75

(e.g., floating point, 16-b, 8-b, and bi-
narized) may not be completely fair;
however, it is the standard practice.

COTS Devices
The NVIDIA Pascal-family GPU is
loaded with 8 GB of memory and 256
cores that can operate at a clock fre-
quency of 1.3 GHz and deliver up to
1.33 teraflops for high-performance
computing workloads, like matrix–ma-
trix multiplication using developed
libraries, such as cuBLAS. Such per-
formance is only very high for large
workloads, and it degrades when the
workload is small. CuSPARSE is anoth-
er useful library that performs sparse
matrix operations, such as a pruned
matrix–vector multiplication, and it
outperforms cuBLAS if the matrix is
sufficiently sparsified.

We conduct a set of experiments
of matrix–vector multiplication over
the GPU using both the cuBLAS and
cuSPARSE libraries as well as over the
CSC-AP for a CSC matrix of size 1,024
by 1,024 with various compression
rates. We measure the performance
and efficiency of these implementa-
tions only after the data are loaded
to the on-chip memory of the two
devices. Figure 7(a) shows the true
efficiency of the CSC-AP at 100 MHz
(0.62 V) and compares it with that of
the GPU at 1.3 GHz using either of the
two NVIDIA Compute Unified Device
Architecture libraries over the given
workload with various compression
rates. Figure 7(b) plots the equiva-
lent efficiency of the experiments by
taking the compression rate into ac-
count according to (13).

According to this experiment, the
performance and efficiency of cuBLAS
is constant for variously pruned ma-
trices, and, since it is agnostic to the
sparsity of its workload, its equivalent
performance and efficiency are the
same as its actual ones. On the other
hand, the equivalent performance and
efficiency of both the CSC-AP and cuS-
PARSE libraries increase proportional-
ly to the compression rate of the CSC
matrix. Consequently, for a matrix–
vector multiplication with N = 1,024,
the efficiency of the CSC-AP ranges be-

tween 43 and 2,756 GOPJ compared to
that of the cuSPARSE, ranging between
2 and 66 floating point operations per
joule (FLOPJ) and efficiency of cuBLAS,
which is constant 4.2 FLOPJ for com-
pression rates ranging between one
and 64 times.

ASICs
Table 3 summarizes three accelera-
tors fabricated in 65-nm technology
that process neural network layers
and compares them to the CSC-AP.
The main purpose of this table is to
compare the related work and review
the potentials that the 65-nm tech-
nology brings about, given different
approaches and architectures.

Eyeriss [8] is an accelerator for
deep convolutional neural networks
optimized for energy efficiency and
16-b models. It encompasses a wide
range of neural network layers; how-
ever, it delivers the same amount of
efficiency given pruned DNN layers,
whereas the efficiency of the CSC-AP
can approach 3.6 TOPJ for highly com-
pressed CSC layers.

A unified neural processing unit
(UNPU) [9] is a unified DNN accel-
erator that supports variable weight
precision ranging from 1 to 16 b for
the efficient implementation of DNNs
within a mobile environment. While
the CSC-AP consumes two times less
silicon area, it can consume as little
as 5.6 mW at low-frequency settings,

which is comparable to the UNPU’s
low power consumption of 3.2 mW at
the same frequency range.

Lastly, STICKER [10] is an 8-b ac-
celerator that explores a neural net-
work’s sparsity both in weights and
the fmap data and can deliver up to
62.1 TOPJ, a high amount of equiva-
lent efficiency, which is accounted
for by an fmap and neural network
layer both with 10% sparsity. Com-
pared to STICKER, the CSC-AP has
16 times fewer multipliers and five
times less on-chip memory, thus de-
livering approximately 10–20 times
less efficiency yet consuming ap-
proximately four times less power.

Conclusions
CSC architectures are structurally
sparse graphs that follow a circular
arrangement in their design and have
a density of ()O logN N ; they can be
used to reduce the memory/computa-
tion complexity of FC layers of ()O N 2
where N is the number of nodes in a
given layer. CSC architectures can ef-
fectively compress the traditional FC
layers of neural networks on par with
pruning methods, and then can be im-
plemented using a hardware-friendly
style consuming minimal hardware re-
sources and power as well as provid-
ing high energy efficiency.

The CSC-AP is a chip with a die size
of 7 mm2 fabricated in 65 nm that can
process neural networks compressed

TABLE 3. A COMPARISON WITH RELATED WORK.

EYERISS [8] UNPU [9] STICKER [10] CSC-AP

Layer type CONV CONV + FC CONV + FC FC

Sparsity mode Dense Dense Sparse CSC

Tech (nm) 65 65 65 65

Die area (mm2) 12.25 16 7.8 7

Data width (b) 16 1–16 8 8

Multiplier count 168 13,824 256 16

On-chi buffer (kB) 108 256 170 32

Supply voltage (V) 0.82–1.17 0.63–1.1 0.67–1 0.62–1

Power (mW) 235–332 3.2–297 20.5–284.4 5.6–74.3

Frequency (MHz) 100–250 5–200 20–200 1–100

Peak efficiency (TOPJ) 0.31 3.08 0.41–62.1 0.04–3.61

CONV: convolutional.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

76	 FALL 2021	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

with CSC architectures and can deliver
up to 3.6 TOPJ which is on par with
related accelerators fabricated in the
same technology. Moreover, CSC archi-
tectures, similar to butterfly networks,
can be categorized as one of the high-
bandwidth communication networks
for parallel system interconnections.
Such interconnection is used in the
design of a high-bandwidth router em-
bedded into the CSC-AP.

Acknowledgments
We would like to thank Tejas Kadale
and Kevin Gubbi from San Francisco
State University for their help and
valuable input on this project.

References
[1]	 M. Hosseini, M. Horton, H. Paneliya, U.

Kallakuri, H. Homayoun, and T. Mohs-
enin, “On the complexity reduction of
dense layers from O (n2) to O (nlogn) with
cyclic sparsely connected layers,” in Proc.
56th ACM/IEEE Des. Autom. Conf. (DAC),
2019, pp. 1–6.

[2]	 S. Han, J. Pool, J. Tran, and W. J. Dally, “Learn-
ing both weights and connections for effi-
cient neural network,” in Proc. Adv. Neural
Inf. Proc. Syst., 2015, pp. 1135–1143.

[3]	 Y. Guo, A. Yao, and Y. Chen, “Dynamic net-
work surgery for efficient DNNs,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp.
1387–1395.

[4]	 H. Mao et al., “Exploring the regularity of
sparse structure in convolutional neural
networks,” 2017, arXiv:1705.08922.

[5]	 M. Hosseini, N. K. Manjunath, U. Kallakuri,
V. Chandrareddy, and T. Mohsenin, “Cyclic
sparsely connected architectures for com-
pact deep convolutional neural networks,”
in Proc. IEEE Trans. Very Large Scale Inte-
gration (VLSI) Syst., 2021, pp. 1–8.

[6]	 C. Deng, S. Liao, Y. Xie, K. K. Parhi, X.
Qian, and B. Yuan, “PermDNN: Efficient
compressed DNN architecture with per-
muted diagonal matrices,” in Proc. 51st
Annu. IEEE/ACM Int. Symp. Microarch.
(MICRO), 2018, pp. 189–202. doi: 10.1109/
MICRO.2018.00024.

[7]	 C. Ding et al., “CirCNN: Accelerating and
compressing deep neural networks using
block-circulant weight matrices,” in Proc.
50th Annu. IEEE/ACM Int. Symp. Micro-
arch., 2017, pp. 395–408.

[8]	 Y.-H. Chen, T. Krishna, J. S. Emer, and V.
Sze, “Eyeriss: An energy-efficient recon-
figurable accelerator for deep convolu-
tional neural networks,” IEEE J. Solid-State
Circuits, vol. 52, no. 1, pp. 127–138, Jan.
2016. doi: 10.1109/JSSC.2016.2616357.

[9]	 J. Lee, C. Kim, S. Kang, D. Shin, S. Kim,
and H.-J. Yoo, “UNPU: A 50.6 TOPS/W uni-
fied deep neural network accelerator with
1b-to-16b fully-variable weight bit-preci-
sion,” in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), 2018, pp. 218–220.

[10]	Z. Yuan et al., “Sticker: A 0.41–62.1
TOPS/W 8bit neural network processor
with multi-sparsity compatible convolu-
tion arrays and online tuning acceleration
for fully connected layers,” in Proc. IEEE
Symp. VLSI Circuits, 2018, pp. 33–34. doi:
10.1109/VLSIC.2018.8502404.

[11]	A. Shiri et al., “Energy-efficient hardware
for language guided reinforcement learn-
ing,” in Proc. Great Lakes Symp. VLSI,
2020, pp. 131–136.

[12]	H. Ren et al., “End-to-end scalable and low
power multi-modal CNN for respiratory-
related symptoms detection,” in Proc.
IEEE 33rd Int. System-on-Chip Conf. (SOCC)
(SOCC 2020), Sept. 2020, pp. 102–107. doi:
10.1109/SOCC49529.2020.9524755.

[13]	B. Prakash, N. Waytowich, A. Ganeshan,
T. Oates, and T. Mohsenin, “Guiding safe
reinforcement learning policies using
structured language constraints,” in Proc.
SafeAI Workshop 34th AAAI Conf. Artif.
Intell., 2020. [Online]. Available: http://
eehpc.csee.umbc.edu/publicat ions/
pdf/2020/AAAI_RL_Workshop.pdf

[14]	A. N. Mazumder et al., “Automatic detec-
tion of respiratory symptoms using a low
power multi-input CNN processor,” IEEE
Des. Test., early access, May 11, 2021. doi:
10.1109/MDAT.2021.3079318.

About the Authors
Morteza Hosseini (hs10@umbc.edu)
received his M.Sc. degree in electrical
engineering from Sharif University of
Technology, Tehran, Iran, in 2012. He
is working toward his Ph.D. degree in
computer engineering at the Univer-
sity of Maryland, Baltimore County,
Baltimore, Maryland, 21250, USA. His
research interests include optimizing
deep neural networks for energy-effi-
cient deployment to hardware.

Nitheesh Manjunath (n67@umbc
.edu) received his M.Sc. degree in com-
puter engineering from the University
of Maryland, Baltimore County, Balti-
more, Maryland, 21250, USA, in 2021.
He is a field-programmable gate array
(FPGA) design engineer at Broadcast
Sports International, LLC. His research
interests include energy-efficient ma-
chine learning as well as edge artificial
intelligence accelerator design and
implementation on FPGAs and appli-
cation-specific ICs.

Uttej Kallakuri (ukalla1@umbc
.edu) is working toward his Ph.D. degree
in computer engineering from the Uni-
versity of Maryland, Baltimore County,
Baltimore, Maryland, 21250, USA, where
he earned his M.Sc. degree in 2019. His
research interests include the design
and implementation of energy-efficient
high-performance machine learning al-
gorithms on field-programmable gate
arrays and application-specific ICs.

Hamid Mahmoodi (mahmoodi@
sfsu.edu) received his Ph.D. degree in
electrical and computer engineering

from Purdue University, West Lafayette,
Indiana, in 2005. He is a professor of
electrical and computer engineering in
the School of Engineering at San Fran-
cisco State University, San Francisco,
California, 94132, USA. His research in-
terests include low-power, reliable, and
high-performance circuit design in na-
noelectronic technologies. He has pub-
lished more than 100 technical papers
in journals and conferences and holds
five U.S. patents.

Houman Homayoun (hhomayoun
@ucdavis.edu) is an associate profes-
sor in the Department of Electrical and
Computer Engineering at University
of California, Davis, Davis, California,
95616, USA. He is also the director of
the National Science Foundation Cen-
ter for Hardware and Embedded Sys-
tems Security and Trust. His research
interests include hardware security
and trust, applied machine learning
and artificial intelligence, and data-in-
tensive and heterogeneous computing.
He has published more than 200 tech-
nical papers at prestigious conferenc-
es and in journals and directed more
than US$8 million in research funding
from the National Science Foundation,
DARPA, Air Force Research Laboratory,
the National Institute of Standards and
Technology, U.S. Congress, and vari-
ous industrial sponsors.

Tinoosh Mohsenin (tinoosh@umbc
.edu) is an associate professor with the
Department of Computer Science and
Electrical Engineering, University of
Maryland Baltimore County, Baltimore,
Maryland, 21250, USA, where she is
also the director of the Energy-Efficient
High-Performance Computing Lab. She
received her Ph.D. from the University
of California, Davis, in 2010 and her
M.Sc. degree from Rice University in
2004, both in electrical and computer
engineering. She has authored or coau-
thored more than 130 peer-reviewed
journal and conference publications.
Her research interests include design-
ing energy-efficient embedded proces-
sors for machine learning and signal
processing, knowledge extraction tech-
niques for autonomous systems, wear-
able smart health monitoring, and
embedded big data computing. �

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 31,2022 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.

