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Abstract. Detection of respiratory symptoms has long been an area of extensive
research to expedite the process of machine aided diagnosis for various respi-
ratory conditions. This chapter attempts to address the early diagnosis of res-
piratory conditions using low power scalable software and hardware involving
end-to-end convolutional neural networks (CNNs). We propose RespiratorNet,
a scalable multimodal CNN software hardware architecture that can take audio
recordings, speech information, and other sensor modalities belonging to patient
demographic or symptom information as input to classify different respiratory
symptoms. We analyze four different publicly available datasets and use them
as case studies as part of our experiment to classify respiratory symptoms. With
regards to fitting the network architecture to the hardware framework, we per-
form windowing, low bit-width quantization, and hyperparameter optimization
on the software side. As per our analysis, detection accuracy goes up by 5%
when patient demographic information is included in the network architecture.
The hardware prototype is designed using Verilog HDL on Xilinx Artix-7 100t
FPGA with hardware scalability extending to accommodate different numbers of
processing engines for parallel processing. The proposed hardware implementa-
tion has a low power consumption of only 245 mW and achieves an energy effi-
ciency of 7.3 GOPS/W which is 4.3× better than the state-of the-art accelerator
implementations. In addition, RespiratorNet TensorFlow model is implemented
on NVIDIA Jetson TX2 SoC (CPU + GPU) and compared to TX2 single-core
CPU and GPU implementations to provide scalability in terms of off-the-shelf
platform implementations.

Keywords: Multimodal CNN · Scalable respiratory symptoms detection · Low
power embedded · Audio detection · FPGA .

1 Introduction

Most of the people are not that much of conscious with breathing and respiratory health
and overlook the fact that their lungs are important organs that are susceptible to infec-
tions and damages. Acute respiratory infections, as well as chronic respiratory illnesses
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such as asthma, chronic obstructive pulmonary disease, and lung cancer, are examples
of respiratory diseases. Because the symptoms of respiratory diseases are frequently
quite similar, this may lead to confusion and misinterpretation. Making a prompt and
correct diagnosis is critical for the treatment of the respiratory related diseases. This
may have disastrous effects if the virus spreads further, especially during pandemics
like the COVID-19 pandemic. The outbreak of highly contagious COVID-19 and other
respiratory infections have placed tremendous strain on the healthcare system. COVID-
19 causes symptoms such as dry cough, fever, fatigue, dyspnea, and shortness of breath
that vary in severity at various stages of the development of the disease and correspond
differently with certain races, genders, and age groups. In combination with dry cough,
fever was registered by over 70% of COVID-19 confirmed patients Zhao et al. (2020).
Clinical case studies indicate that the young population is less likely to experience re-
lated symptoms of COVID-19 in contrast with the elderly, which is the most affected
group Lee et al. (2020). However, as mentioned earlier, these respiratory related symp-
toms are not unique for only present threat COVID-19. A wide range of chronic and in-
fectious diseases include pulmonary disorders and they develop respiratory symptoms
due to the essential organ that they affect, the lung, whose auditory signals detected by
various diagnostic instruments are among the first to be studied by a medical expert.
As a result, establishing a diagnostic differentiator is critical for determining a fast and
accurate diagnosis of respiratory symptoms and taking necessary measures.

Cough is a common sign of respiratory illnesses Cho et al. (2016). Cough is a com-
mon lung illness sign and a normal human defensive mechanism to protect the respira-
tory system Korpáš and Tomori (1979). During treatment, analyzing the cough sound
may provide useful information about the coughing pathophysiological processes that
lead to specific cough patterns Korpáš et al. (1996). Changes in cough sound are re-
garded as a crucial indication of the progression of respiratory illness and the efficacy
of treatment Korpáš et al. (1996). Because coughs are often seasonal, a cough classifier
or detector must have a very low false alarm rate to be regarded clinically trustworthy.
Furthermore, this system must be very sensitive to variations in cough noises in order
to identify any unusual occurrence Amoh and Odame (2015).

Our previous works show promising results on detecting various respiratory dis-
eases from cough sounds and respiratory sounds. This chapter introduces Respirator-
Net, a scalable and multimodal deep Convolutional Neural Network (DCNN) model
running on tiny processors (e.g tiny FPGAs and processors on cell-phones and tablets)
to assess patients similar to what doctors do at triage and telemedicine, using pas-
sively recorded cough audio, speech, and self-entry information (such as age, gender
and fever). The proposed software and hardware framework is scalable and can poten-
tially have a great impact by bringing proactive healthcare to users’ finger tips and to
estimate the necessity of whether they need to attend clinics and have themselves further
examined with the use of more specialized test-kits or facilities. The main contributions
of this work include:

– Propose RespiratorNet, a scalable multimodal CNN software hardware framework
that can take audio recordings and speech recordings from individuals along with
demographic information and other entries of the subject and be configured for
classifying respiratory symptoms. RespiratorNet allows the software and hardware
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to quickly integrate new sensors data that are customized to various types of sce-
narios.

– Perform input audio window size tuning, network architecture optimization and ex-
treme bitwidth quantization, with the goal of reducing computation complexity and
memory size for low power hardware implementation while meeting the accuracy
requirements.

– Design a parameterized and flexible hardware in verilog HDL for different input
modalities and numbers of processing engines (PE) that replicate the RespiratorNet
architecture for low power deployment.

– A comprehensive FPGA hardware implementation and benchmarking of the pro-
posed work with different three case studies, and comparisons with the state-of-
the-art FPGA implementation results.

– Implement the TensorFlow model of RespiratorNet on embedded Nvidia Jetson
TX2 board and measure its implementation characteristics for various CPU and
GPU configurations.

2 Related Work

Audio based medical diagnosis has recently become an active area of research with
the advancement of different machine learning and deep learning algorithms. Convolu-
tional Neural Network (CNN) and Long Short Term Memory (LSTM) Networks have
shown impressive performance in image and time-series classification tasksJafari et al.
(2019); Shea et al. (2018); Rashid et al. (2020) as well as audio recognition tasks Abdel-
Hamid et al. (2014); Piczak (2015a); M.Hosseini et al. (2020). Using chest-mounted
sensors, authors in Amoh and Odame (2016) used both DCNNs and recurrent neu-
ral networks (RNNs) to classify cough sound. Deep learning was used to detect sleep
apnea in Nakano et al. (2019). DCNNs showed promising performance in the heart
sound classification in Ryu et al. (2016). Lung sounds were classified using DCNN in
Aykanat et al. (2017) and RNN Perna and Tagarelli (2019). Although the reported ac-
curacy is quite high, these researches were done on unpublished data set which limit
the reproducibility and further improvement of the work on this domain. The 2017 In-
ternational Conference on Biomedical Health Informatics (ICBHI) Rocha et al. (2017)
presented a benchmark respiratory audio data set to promote research into the classifica-
tion of respiratory sound systems. Since then, researchers proposed various algorithms
Perna (2018); Liu et al. (2019); Pham et al. (2020); Demir et al. (2020) using differ-
ent deep learning techniques to classify respiratory cycle anomalies such as the precise
locations of wheezes and crackles within the cycle of each respiratory sound record-
ing. That dataset helped the researchers to propose a number of algorithms to identify
respiratory cycling irregularities such as the exact position of the wheezes and crackle
within the cycle of every sound recording in the respiratory system. Authors in Acharya
and Basu (2020) proposed Log quantized deep CNN-RNN based model for respiratory
sound classification for memory limited wearable devices. Recently, a research group
from MIT already showed Covid-19 diagnosis using cough recording with high accu-
racyLaguarta et al. (2020). Two different datasets Piczak (2015b); Fonseca et al. (2018)
were published to classify multiple environmental sound which include cough sounds
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among the other classes. Recently, a group from EPFL published one of the biggest
crowd sourced cough datasets Orlandic et al. (2020). These dataset help researchers
to address audio classification based health monitoring systems which is in demand
now-a-days due to Covid-19 pandemic.

Fig. 1. The proposed multimodal RespiratorNet framework to classify respiratory symptoms.
Some of the input information is auditory, such as the sound and frequency of coughing and
speech that can detect patient’s shortness of breath. Other input data can be sensed or entered
manually such as demographic information. RespiratorNet is flexible and scalable in the sense
that it allows the device to quickly integrate new sensors data that are customized to various types
of scenarios, such as home appointments, hospital visits or even identification of symptoms in
public settings with non-contact sensors.

3 RespiratorNet Framework

The high level overview of the proposed RespiratorNet framework is presented in Fig-
ure 1. RespiratorNet can take any kind of audio recording from the user and classify
accordingly. RespiratorNet can also process human speech and classify whether there
is any sign of shortness of breath in the speech. Moreover, to fine tune the classification
accuracy, RespiratorNet can take numeric information as input related to demographic
or symptoms vectors. We evaluated RespiratorNet with human cough sounds, recorded
speech, and respiratory sounds integrated with demographic information which is ex-
plained in the following section. The detailed architecture of the RespiratorNet frame-
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Fig. 2. The detailed architecture of the proposed flexible RespiratorNet in which end-to-end CNN
is implemented that can be used for cough detection, dyspnea detection, and respiratory sound
detection with/without the integration of other input vectors such as demographic information.
The input and computation will differ according to the audio window size selected.

work is presented in Figure 2. As the input is in the form of audio recordings, it is
divided into window frames to extract features, since the right windows to distinguish
between static and continuous signals are crucial. Windowing involves first standardiz-
ing the independent variables and then creating sliding T windows with S growing over
the results. If the channels are referred by M in the multimodal signals, then window
images of shape 1× T ×M are created with a label assigned to each window image
as the label of the current time step. As a result, a window image at location Tt has
previous states for each data point from (t −T + 1) ... t where t is represented as the
timestep. Then the window frames are forwarded into the CNN layers for necessary
feature extraction and classification.

Our CNN layers are flexible in terms of number of layers. We can decide particular
number of CNN layers based on the evaluation case studies. To extract the correlation
between the one-dimensional audio signals, we used one-dimensional CNN layers in
the beginning of the model. The feature map size reduction is done by striding in the
CNN layers. When we get the required small feature map size, the output is flattened
and then forwarded to a number of fully connected layers to isolate sufficient window
frame information with interconnections between nodes. At the end, the output is seen
in the form of the probability distribution of the last fully layer with Softmax activation
function.

In previous work, authors showed that if the domain specific knowledge is con-
catenated with the deep learning model, it improves the model accuracy. Based on this
intuition, we have given flexibility to our model to process numeric information in the
form of input vectors in parallel to the feature extraction. After the audio processing
with the CNN layers, these input vectors containing numeric data is concatenated with
the flattened output from the convolution framework of the classification model. This
concatenated output is further processed through the fully connected layers to finalize
the output label.

4 Experimental Results and Analysis

In this section, RespiratorNet is evaluated using three respiratory symptoms bearing
case studies including Cough detection, Dyspnea Detection and Detection of Respi-
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ratory Sound with Demographic Information and in depth analysis and experimental
results are provided.

4.1 Case Study 1: Cough Detection

We evaluated RespiratorNet for cough detection on three different datasets: ESC-50
Piczak (2015b), FSDKaggle2018 Fonseca et al. (2018), and Coughvid Orlandic et al.
(2020).

ESC-50 The ESC-50 dataset contains a total of 2,000 audio recordings of normal en-
vironmental sounds. It has 50 equally distributed classes including ”coughing”, so that
each class has 40 audio recordings. All the audio recordings are 5 seconds in length,
and are stored as single-channel audio waveform files at 44.1 kHz sampling rate. The
dataset is originally divided into 5 folds with 400 audio recordings per fold. For each
cross-validation round, we use 3 folds as train set, 1 fold as validate set, and 1 fold as
test set.

Input sound duration is a key factor here to better distinguish sounds across the
50 classes. During preprocessing, we first load each audio recording with the default
44.1 kHz sampling rate and apply initial audio-wise regularization to the range of -1 to
1. Next, we crop the audio recording into windows, and discard silent windows if the
window-wise maximum amplitude is less than a certain threshold. Each extract window
has the same label as the audio recording which it is cropped from. At last, we apply
the (-1, 1) regularization again to each window individually.

We consider a window and its label as one instance of model input. However, since
the sound of an audio recording may only exist in some of the extracted windows, we
evaluate the predictions at audio recording level by probability-voting Piczak (2015a).
Specifically, we sum up all the softmax model outputs for every window extracted from
one test audio recording, and make a prediction based on the summed-up output.

Models are trained using stochastic gradient descent (SGD) with a momentum of
0.6 for 100 epochs under the categorical cross-entropy criterion. The learning rate is
initially defined as 0.01, and then it is decreased according to the convergence perfor-
mance. For silent window removal, the amplitude threshold is 0.2. The window stride
is always 0.25s. We used TensorFlow Abadi et al. (2015) for implementation of the
models and associated methods and Librosa McFee et al. (2015) for audio processing.

Figure 3 (a) shows the accuracy results for this applications with respect to window
size. As evident in Figure 3 (a), all the experiments show similar performances on over-
all accuracy metric. As for the performance on cough detection, 1s windows show good
and balanced performance of extracting distinctive feature. Thus, a window size of 1s
is chosen for our implementation scenario.

FSDKaggle2018 Similiar to ESC-50, the FSDKaggle2018 dataset contains 41 sound
classes and cough is one of them. There are 11,073 audio recording samples, where
each of the audio recordings is an uncompressed PCM 16 bit, 44.1 kHz, mono audio
file. The dataset is separated into a train set with approximately 9.5k samples and a
test set with about 1.6k samples. The audio recordings spread unequally amongst the
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41 classes for both the train set and the test set, with a similar category distribution
between them. Out of the 9.5k samples in the train set, 3.7k were listened by human
participants and were annotated with ground truth label. The rest 5.8k samples have
non-verified annotations with. The estimated accuracy of the non-verified annotations
for each class is at least 65-70%. In contrast to the train set, the test set contains only
manually-verified annotated samples.

To take fully use of both verified annotated audio recordings and non-verified an-
notated audio recordings, we handle them differently during training. Firstly, we train
the model with verified annotated audio recordings only for initial convergence. Then,
we use the entire train set to fine-tune the model. However, before each fine-tune round,
we relabel the non-verified annotations. The new label is generated by mixing up the
non-verified annotation and the prediction of the audio recording by the current model,
with a mix-up ratio same as the ratio between the non-verified annotations quality and
the test accuracy of the current model.

Same as our work on the ESC-50 dataset, we use 44.1 kHz sampling rate and same
window extraction method. Meanwhile, we apply normalization and silence filtering
during preprocessing and sliding window probability-voting at testing. The model hy-
perparameters are also the same except training epoch number and learning rate decay.

We consider the overall top-3 accuracy and recall score of the cough class as our
metrics to assess the proposed architecture on cough detection. Figure 3 (b) shows the
accuracy results for this applications with respect to window size. As evident in Figure
3 (b), all the experiments show similar performances on overall top-3 accuracy metric.
As for the performance on cough detection, 2s windows show good and balanced per-
formance of extracting distinctive feature. Thus, a window size of 2s is chosen for our
implementation scenario.

CoughVID CoughVID is a crowdsourced dataset for machine learning researchers
aiming to find the connections between COVID-19 diagnosis and cough sound features.
It provides over 20,000 cough recordings donated by participants, as well as a wide
range of other subjects such as ages, genders, geographic locations, and especially,
COVID-19 statuses. As a quality check, the dataset organizers include a ML based
cough detection result for each audio recording as well, which is a probability of how
likely the audio recording contains at least one cough sound.

As an initial step of taking fully advantages of this dataset for COVID-19 research,
we evaluate our previous work on cough detection with it. In details, we use models
trained on the ESC-50 dataset to predict cough existence, and compare with an assumed
ground truth based on the affiliated probability. We consider two cough existence pre-
diction schemes here. For the first one, we predict the audio recording contains cough
if cough class is among the top-5 predictions of the sliding-window probability-voting
results. For the second one, if at least one window gives a cough prediction among
the top-5 predictions, we consider the audio recording has cough. As recommended
by the dataset organizer, the assumed ground truth labels are generated by whether the
affiliated cough existence probability is greater than 80% or not. Figure 3 (c) shows
the results for both schemes by different input window sizes, in accuracy of exist and
non-exist binary prediction.
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Fig. 3. Detection Accuracy with different window sizes for (a)ESC-50 cough detection, (b)
FSDK2018 Cough Detection (c) CoughVID Cough Detection and (d) Dyspnea Detection. For
window size experiments, padding is applied to 2D-convolutions.



Automatic Detection of Respiratory Symptoms 9

4.2 Case Study 2: Dyspnea Detection

We also assess the efficiency of RespiratorNet on dyspnea detection, with a dataset
collected from our participants. For each participant, we record two audio recordings.
One is the sound of reading an article paragraph normally, and the other one is reading
the same paragraph after some strenuous exercises, so that some gasp sounds would be
included. We label the two audio recordings as normal and dyspnea accordingly. The
recordings are recorded by various devices and then re-sampled at a sampling rate of
44.1 kHz. Each recording has a length between 30 to 60 seconds. After window ex-
traction with different configurations, we could have about 3000 windows to be divided
into train, validation, and test sets, while making sure that no window in the test set is
overlapped with any window in the train set.

Most of the model configurations are the same as the previous work. One difference
is that we do not apply silence filtering for this case study, due to the fact that audio
recordings may include gasps. The other one is that we use window-wise prediction
at testing, since we are doing a binary classification on the relatively small dataset.
It is obvious from Figure 3 (d) that the window size of 5s and 7s works better for the
model of dyspnea detection. The number of computation would be increased by a higher
window size. We therefore chose to use the 5s window for this application.

4.3 Case Study 3: Detection of Respiratory Sound with Demographic
Information

In section 4.1 and section 4.2, we evaluate the performance of RespiratorNet only with
auditory input. In this one, we also include demographic information. The dataset Rocha
et al. (2019) we use for this case study comprises 920 recordings collected from 126 par-
ticipants with annotations unequally disperse among 8 forms of respiratory conditions,
including Upper Respiratory Tract Infection (URTI), Asthma, Chronic Obstructive Pul-
monary Disease (COPD), Lower Respiratory Tract Infection (LRTI), Bronchiectasis,
Pneumonia, and Bronchiolitis. The length of each recording varies from 10 to 90 sec-
onds, often be controlled with 20 second samples.

While the majority of this dataset are COPD-diagnosed participants, by taking only
audio recordings captured by Welch Allyn Meditron Master Elite Electronic Stetho-
scope, one of the four devices used for this dataset, we generate a random subset en-
compassing 63 participants. We split it into a semi-balanced train and a test set of 52 and
11 participants that include 5 types of pulmonary classes. In consequence, we eliminate
Asthma, Pneumonia, and LRTI.

Each selected audio sample is cut into 5s windows with a stride of 1s for data aug-
mentation. Therefore, about 1600 windows are generated from the total 2000 seconds
of the training dataset, and 368 windows are generated from the total 460s testing data.
The selection of the 5s window is empirically inferred from the experience varying from
1s to 10s.

We performed a series of experiments, from audio input only, to merging the age
group information with auditory signal. Table 1 contrasts the two sets of studies, sug-
gesting that the COPD and healthy conditions are diagnosed with higher accuracy and
resulting in a total test accuracy increased by 5% when the demographic information is
taken into account.
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Table 1. Respiratory sound classification accuracy and model complexity with and without taking
the demographic information into account.

DCNN characteristics
Sensitivity (%) Accuracy (%)

URTI Healthy COPD Bronchiec. Bronchiol. Test
Without Demographic Info. 21 66 96 88 4 78

With Demographic Info. 16 72 100 88 15 83 (+5%)

Fig. 4. RespiratorNet hardware architecture designed for the case studies that includes feature
map memory and weight memory addressed by the convolution and fully connected modules
to fetch data into the Processing Engine (PE) array. The PE array conducts MAC operations and
temporarily saves data to the output memory. The control logic of the top defines the functionality
of the convolution and fully connected modules. The symptoms vector are only used in Case
Study 3 where demographic information and audio samples are supplied to the model. This data
is concatenated to the feature map memory to process the finishing fully connected layers of the
model. In the top module, finite-state machine manages the concatenation logic.
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5 Hardware Architecture Design

The hardware architecture must be built with special care for accurate processing and
functionality in order to incorporate RespiratorNet for the detection of cough and dysp-
nea along with the classification of respiratory sounds with demographic or symptoms
details. This applies to basic design needs such as parallel calculation and effective
memory sharing. This architecture is also modeled mainly to comply with the latency
requirement with a low area and utilization overhead. In order to achieve the required
performance and power efficiency requirements, the hardware architecture thus imple-
mented here is reconfigured to any number of filters, processing engines (PEs) and
layers for any model.

5.1 FPGA Design Flow and Framework

The main blocks that dominate the logic flow and memory footprint in terms of com-
putation and resources are explained below:

The Convolution module performs 1D and 2D convolution depending on the soft-
ware architecture requirement. The control unit defines the functionality of the convo-
lution by using the address generator to address the convolution process dynamically,
involving stride and corner case scenarios. The Fully Connected module represents the
functionality of the fully connected layers where all the neurons are connected to each
other. The block is also guided to a matrix vector multiplication with proper addressing
by the control unit and an address generator. The generated data are collected in the PE
array. The PE array uses uses a multiplier and an adder with ReLu activation feature
to duplicate the MAC process. This module also spreads the data into various arrays to
allow parallel processing, depending on the number of PEs initialized in the parame-
ters. All the necessary modules have been integrated in the Top module. Furthermore
this block also maintains a logic flow and controls the data path to PE array, Convo-
lution and the Fully connected modules. The demographic/numerical information used
in the case study 3 is provided in Symptoms/Demographic Vector block. The numer-
ical information shall be stored as an one dimensional vector which after processing, is
concatenated to the feature map memory. The control unit supervises this concatenation
process, while the state machine controls the layer flow after the concatenation.

The finite-state machine (FSM) controls the process flow and logic for convolu-
tional and fully connected layer operation. The address generated through the layer
functionality is sent to the on-chip Block RAM (BRAM) memory instantly where each
of the memory locations has a data width of 8-bits. Consequently, the input data from
the feature map passes through the multiply-accumulate unit inside the PE array, and
the product of the computation is saved on the output memory through ReLu activation
logic. The PE logic is implemented only through a pipeline of an adder, a multiplier,
and an accumulator which saves resources. The PE array ensures parallel execution of
the convolution setup as evident from the Fig. 4, where 8-bit values are read from the
feature map memory but n×8 values are processed from weight memory for parallel
operation where n is equal to the numbers of PEs in the array. The output from each PE
continues storing these values until all values are received. As a result, the PE arrays
are completely independent of each other in terms of data dependency.
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5.2 Effect of Parallelism

One of the goals of this work is to introduce scalability in the hardware with regards to
serial and parallel operation as per the requirement of different applications. Especially,
in deep convolutional neural networks, convolutional layers dominate the computation
overhead which directly affects the latency and throughput of the hardware. Hence, it
is imperative to find the sweet spot for efficient parallelism existing within the convo-
lutional layers. Among all the parallelism mechanisms studied in Zhang et al. (2015),
output channel tiling provides the best throughput in FPGA fabric which performs con-
volution across multiple output channels for a given input channel, simultaneously. As
a result, we also design the parallelism based on output channel tiling in our hardware.
The outcome of the parallelism approach is illustrated in Figure 5, in terms of the en-
ergy efficiency of our hardware accelerator under different data width precision. Our
RTL (Register Transistor Level) design can achieve an energy efficiency up to 12.7
GOPS/W when implemented for 8 PEs. Similarly, the performance threshold for 2 and
4 PEs go up to 5.7 and 7.3 GOPS/W, respectively.

5.3 Quantization: Fixed Point Precision Analysis

All the case studies explored in this work use the quantization level of 8 bits. Going
below this level does not provide an appropriate trade-off in terms of hardware per-
formance and model accuracy which is clearly visible from figure 6. In the software
side, the quantization is applied on kernel weights, bias, and activations for all the con-
volution layers and fully-connected layers, other than the first layer and the last layer.
According to Figure 6, our model shows acceptable performance while shrinking the
model size even to 1/8 of the original 32-bit model. Thus, our proposed hardware ar-
chitecture has been implemented using a data width of 8-bit fixed-point precision for
all four case studies. Even though the change of the data width does not amount to any
variation in functional behavior, it affects the operating frequency and power consump-
tion which in turn alters the energy consumption of the hardware. So, it is pivotal to
figure out an operating frequency that is consistent with different data width precisions
to properly analyze the effect of changing bits over the on-chip energy consumption.
In this case, our hardware framework runs at a frequency of 80 MHz to investigate the
variation in energy consumption ranging from 16-bit down to 8-bit fixed-point preci-
sion as shown in Figure 7 (a). As evident in the plot, an 8-bit implementation over its
16-bit counterpart results in an energy saving of 4.5% without much deviation in the
model classification accuracy for the respiratory sounds dataset network. The proposed
hardware utilizes 8 PEs to implement all the different model configurations explored in
this work. With a configuration setting of 8 PEs and 8-bit fixed-point precision, most
of the on-chip dynamic power is dedicated to BRAMs with only a fraction of the total
dynamic power being utilized in clocks, signals, logic, and other areas as highlighted
in Figure 7 (b). Also, per our analysis, as the number of processing engines increases,
the power consumption of the BRAMs and DSPs increases to accommodate the parallel
processing of the framework.
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(b) Power Consumption
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Fig. 7. (a) Illustration of the trend for FPGA energy consumption against different fixed point
precision on the respiratory sounds dataset network and (b) breakdown for power consumption
in the proposed hardware for a setting of 8 PEs running at 80 MHz.
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6 Hardware Implementation and Results

6.1 FPGA Implementation

On the Artix-7 100t FPGA (Field Programmable Gate Array), the previously mentioned
software frameworks are implemented at a clock frequency of 80 MHz. The design of
the RTL (Register Transistor Level) is defined in Verilog HDL and synthesized using the
Xilinx Vivado 2018.2 tool for the FPGA portion. The option for the Artix-7 100t FPGA
comes from the fact that the applications are targeted for embedded implementation of
low power, making this component ideal for our objective, with only 135 BRAMs as on-
chip memory. The results tabulated in the 2 table represent the output of the hardware
in this work for the various case studies. In terms of computation, the model with the
highest overhead is the one that detects diseases from respiratory sound analysis. The
energy consumption of 836 mJ is considerable in this case, with 6 billion operations.
Depending on the calculations and size of the model, our RTL design has different
results, with energy efficiency varying from 4.1 GOPS/W to 7.3 GOPS/W.

The Table 2 compares various recent hardware designs aimed at CNN acceleration.
Ma et al. (2016) offers a scalable hardware platform that demonstrates the versatility
to deploy CNN architectures in high-level synthesis and optimization. In Huang et al.
(2017) implementation of a 23 layer, SqueezeNet is introduced. In addition to this on
Jafari et al. (2019), a low-power multimodal CNN system is accelerated using the same
Artix-7 FPGA component used in our work. Our proposed system, when compared, is
1.1× and 4.3× more energy efficient than the Ma et al. (2016) and Jafari et al. (2019)
implementations. Although the design is marginally ahead in terms of energy efficiency
in Huang et al. (2017), with a consumption of less than 33×, our work draws signifi-
cantly low power.

Table 2. Implementation results and comparisons of the proposed case studies with recent CNN
hardware designs. The results for our work are obtained for 8-bit fixed point precision at a clock
frequency of 80 MHz.

Architecture This work Jafari et al. (2019) Huang et al. (2017) Ma et al. (2016)

Application
Cough

Detection
(FSDKaggle2018)

Dyspnea
Detection

Respiratory
Sounds with

demographic info

Cough
Detection

(CoughVID)
Time-Series Image Image

FPGA Platform Artix-7 Artix-7 Artix-7 Artix-7 Artix-7 Virtex-7 Stratix - V
Input Dimension 88200 x 1 220500 x 1 220500 x 1 66150 x 1 60 x 40 x 1 256 x 256 x 3 256 x 256 x3
Model Size (Kb) 357 198 320 359 N/A N/A N/A

Computations (GOP) 2.4 0.6 6 1.8 0.05 0.78 1.5
Fixed Point Precision 8-bit 8-bit 8-bit 8-bit 8-16 bit 8-16 bit 8-16 bit

#PE used 8 8 8 8 8 N/A N/A
Frequency (MHz) 80 80 80 80 100 110 100

Latency (s) 2.3 0.4 3.41 2 0.015 0.004 0.012
BRAM (Used %) 81 (60%) 81 (60%) 81 (60%) 81 (60%) 35 (30%) 2715 (92%) 1552 (61%)

Total Power (mW) 244 240 245 244 175 27700 19765
Energy (mJ) 561 96 836 488 0.35 110.8 237.2

Performance (GOPS) 1 1.5 1.8 0.9 0.3 213.7 134.4
Efficiency (GOPS/W) 4.1 6.3 7.3 3.7 1.7 7.7 6.8
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6.2 NVIDIA Jetson TX2 Implementation

The trained TensorFlow model of RespiratorNet was implemented on embedded NVIDIA
Jetson TX2 platform for evaluating the energy-latency trade-off. Trading off between
the computation complexity and the classification accuracy, trained ML models can be
deployed to tiny processors and edge devices (e.g. tiny FPGAs, a cell-phone, tablet). At
least two hardware-level characteristics are attributed to all DCNN models: the model
size and the number of operations per inference, all of which are upper-bounded by the
platform resources to which they are deployed or by the inference deadline. Both the
hardware resource constraints and the diagnostic latency should follow the application
objectives while bringing all the components of the system together. After setting the
batch-size to 1, two mobile CPUs like Denver (dual-core) and ARM-Cortex A57 (quad-
core) as well as an embedded CPU+GPU implementation with different frequency set-
tings are deployed on the trained model of RespiratorNet. The TX2 development board
has been used to calculate all of the parameters as it provides precise on-board power
measurement. Table 3 summarizes the implementation. From the table 3 it can be seen
that Denver CPU with a low frequency setting dissipates the least power and takes
10 seconds to classify one frame. However, the most energy efficient implementation,
ARM CPU+GPU, dissipates approximately 10× more power compared to Denver to
classify the same frame in 0.1 seconds. For both the cases, we provided a 5s frame of
recording to the memory.

Table 3. Deploying the RespiratorNet model to commercial off-the-shelf devices including a
dual-core Denver CPU, a quad-core ARM A57 CPU, and a combination of ARM CPU + Pascal
GPU from the NVIDIA TX2 board.

Configuration CPU Freq.
(MHz)

GPU Freq.
(MHz)

Power
(mW)

Latency
(s)

Performance
(GFLOP/s)

Energy
(J)

Energy Efficiency
(GFLOP/s/W)

Denver CPU
345 - 881 10.0 0.019 8.81 0.021

2035 - 3170 0.9 0.215 2.85 0.068

ARM A57 CPU
345 - 1168 3.7 0.052 4.32 0.045

2035 - 4425 0.6 0.322 2.66 0.073
TX2 CPU+GPU 2035 1300.5 9106 0.1 1.935 0.91 0.210

7 Conclusion

In this chapter, to identify various respiratory symptoms, we propose RespiratorNet, a
scalable multimodal CNN software hardware architecture that can take audio record-
ings, speech information, and other sensor modalities from patient demographic or
symptom information. We evaluate and use four distinct publicly accessible databases
as case studies to identify respiratory symptoms as part of our experiment. The hard-
ware prototype for RespiratorNet is also scalable and flexible to accommodate different
input modalities, data width bit precisions and parallel processing engine numbers. The
proposed implementation of hardware has a low power consumption of o 245 mW
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and achieves an energy efficiency of 7.3 GOPS/W that is 4.3 times higher than the
implementations of state-of-the-art accelerators. Furthermore the RespiratorNet Tensor-
Flow model is implemented on the NVIDIA Jetson TX2 SoC (CPU + GPU) to provide
scalability in terms of off-the-shelf platform implementations and is compared to TX2
single-core CPU and GPU implementations.



Bibliography

Martı́n Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. http://tensorflow.org/ Software available from tensor-
flow.org.

Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and
Dong Yu. 2014. Convolutional neural networks for speech recognition. IEEE/ACM
Transactions on audio, speech, and language processing 22, 10 (2014), 1533–1545.

Jyotibdha Acharya and Arindam Basu. 2020. Deep Neural Network for Respiratory
Sound Classification in Wearable Devices Enabled by Patient Specific Model Tuning.
IEEE transactions on biomedical circuits and systems 14, 3 (2020), 535–544.

Justice Amoh and Kofi Odame. 2015. DeepCough: A deep convolutional neural net-
work in a wearable cough detection system. In 2015 IEEE Biomedical Circuits and
Systems Conference (BioCAS). IEEE, 1–4.

Justice Amoh and Kofi Odame. 2016. Deep neural networks for identifying cough
sounds. IEEE transactions on biomedical circuits and systems 10, 5 (2016), 1003–
1011.

Murat Aykanat, Özkan Kılıç, Bahar Kurt, and Sevgi Saryal. 2017. Classification of lung
sounds using convolutional neural networks. EURASIP Journal on Image and Video
Processing 2017, 1 (2017), 65.

Sang-Heon Cho, Horng-Chyuan Lin, Aloke Gopal Ghoshal, Abdul Razak Bin Ab-
dul Muttalif, Sanguansak Thanaviratananich, Shalini Bagga, Rab Faruqi, Shiva Saj-
jan, Alan JM Brnabic, Francis C Dehle, et al. 2016. Respiratory disease in the Asia-
Pacific region: Cough as a key symptom.. In Allergy & Asthma Proceedings, Vol. 37.

Fatih Demir, Abdulkadir Sengur, and Varun Bajaj. 2020. Convolutional neural networks
based efficient approach for classification of lung diseases. Health Information Sci-
ence and Systems 8, 1 (2020), 4.

Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel PW Ellis, Xavier Favory,
Jordi Pons, and Xavier Serra. 2018. General-purpose tagging of freesound au-
dio with audioset labels: Task description, dataset, and baseline. arXiv preprint
arXiv:1807.09902 (2018).

Chao Huang, Siyu Ni, and Gengsheng Chen. 2017. A layer-based structured design of
CNN on FPGA. In 2017 IEEE 12th International Conference on ASIC (ASICON).
IEEE, 1037–1040.

A. Jafari et al. 2019. SensorNet: A Scalable and Low-Power Deep Convolutional Neural
Network for Multimodal Data Classification. IEEE Transactions on Circuits and
Systems I: Regular Papers 66, 1 (Jan 2019), 274–287. https://doi.org/10.
1109/TCSI.2018.2848647
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a Iné Respiračné Reflexy. Veda.

http://tensorflow.org/
https://doi.org/10.1109/TCSI.2018.2848647
https://doi.org/10.1109/TCSI.2018.2848647


Automatic Detection of Respiratory Symptoms 19

Jordi Laguarta, Ferran Hueto, and Brian Subirana. 2020. COVID-19 Artificial Intelli-
gence Diagnosis using only Cough Recordings. IEEE Open Journal of Engineering
in Medicine and Biology (2020).

Ping-Ing Lee, Ya-Li Hu, Po-Yen Chen, Yhu-Chering Huang, and Po-Ren Hsueh. 2020.
Are children less susceptible to COVID-19? Journal of Microbiology, Immunology,
and Infection (2020).

Renyu Liu, Shengsheng Cai, Kexin Zhang, and Nan Hu. 2019. Detection of Adven-
titious Respiratory Sounds based on Convolutional Neural Network. In 2019 Inter-
national Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS).
IEEE, 298–303.

Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula. 2016. Scalable
and modularized RTL compilation of convolutional neural networks onto FPGA. In
2016 26th International Conference on Field Programmable Logic and Applications
(FPL). IEEE, 1–8.

Brian McFee, Colin Raffel, Dawen Liang, Daniel Patrick Whittlesey Ellis, Matt
McVicar, Eric Battenberg, and Oriol Nieto. 2015. librosa: Audio and Music Sig-
nal Analysis in Python.

M.Hosseini, H.Ren, H.Rashid, A.Mazumder, B.Prakash, and T.Mohsenin. 2020. Neural
Networks for Pulmonary Disease Diagnosis using Auditory and Demographic Infor-
mation. In epiDAMIK 2020: 3rd epiDAMIK ACM SIGKDD International Workshop
on Epidemiology meets Data Mining and Knowledge Discovery. ACM, 1–5, in press.

Hiroshi Nakano, Tomokazu Furukawa, and Takeshi Tanigawa. 2019. Tracheal sound
analysis using a deep neural network to detect sleep apnea. Journal of Clinical Sleep
Medicine 15, 8 (2019), 1125–1133.

Lara Orlandic, Tomas Teijeiro, and David Atienza. 2020. The COUGHVID crowd-
sourcing dataset: A corpus for the study of large-scale cough analysis algorithms.
arXiv preprint arXiv:2009.11644 (2020).

Diego Perna. 2018. Convolutional neural networks learning from respiratory data. In
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
IEEE, 2109–2113.

Diego Perna and Andrea Tagarelli. 2019. Deep auscultation: Predicting respiratory
anomalies and diseases via recurrent neural networks. In 2019 IEEE 32nd Interna-
tional Symposium on Computer-Based Medical Systems (CBMS). IEEE, 50–55.

Lam Pham, Ian McLoughlin, Huy Phan, Minh Tran, Truc Nguyen, and Ramaswamy
Palaniappan. 2020. Robust Deep Learning Framework For Predicting Respiratory
Anomalies and Diseases. arXiv preprint arXiv:2002.03894 (2020).

Karol J Piczak. 2015a. Environmental sound classification with convolutional neural
networks. In 2015 IEEE 25th International Workshop on Machine Learning for Sig-
nal Processing (MLSP). IEEE, 1–6.

Karol J Piczak. 2015b. ESC: Dataset for environmental sound classification. In Pro-
ceedings of the 23rd ACM international conference on Multimedia. 1015–1018.

Hasib-Al Rashid, Nitheesh Kumar Manjunath, Hiren Paneliya, Morteza Hosseini, and
Tinoosh Mohsenin. 2020. A Low-Power LSTM Processor for Multi-Channel Brain
EEG Artifact Detection. In 2020 21th International Symposium on Quality Electronic
Design (ISQED). IEEE.



20 Rashid et al.

BM Rocha, D Filos, L Mendes, I Vogiatzis, E Perantoni, E Kaimakamis, P Natsiavas,
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