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ABSTRACT

In deep neural networks (DNNs), model size is an important fac-

tor affecting performance, energy efficiency and scalability. Re-

cent works on weight pruning have shown significant reduction in

model size at the expense of irregularity in the DNN architecture,

which necessitates additional indexing memory to address non-zero

weights, thereby increasing chip size, energy consumption and de-

lays. In this paper, we propose cyclic sparsely connected (CSC)

layers, with a memory/computation complexity of O(NloдN ), that
can be used as an overlay for fully connected (FC) layers whose

number of parameters, O(N 2), can dominate the parameters of

the entire DNN model. The CSC layers are composed of a few se-

quential layers, referred to as support layers, which result in full

connectivity between the Inputs and Outputs of each CSC layer. We

introduce an algorithm to train models with FC layers replaced with

CSC layers in a bottom-up approach by incrementally increasing

the CSC layers characteristics such as connectivity and number

of synapses, to achieve the desired accuracy given a compression

rate. One advantage of the CSC layers is that there will be no re-

quirement for indexing the non-zero weights. Our experimental

results using AlexNet on ImageNet and LeNet300100 on MNIST

indicate that by substituting FC layers with CSC layers, we can

achieve 10× to 46× compressionwithin amargin of 2% accuracy loss,

which is comparable to non-structural pruning methods. A scalable

parallel hardware architecture to implement CSC layers, and an

equivalent scalable parallel architecture to efficiently implement

non-structurally pruned FC layers are designed and fully placed

and routed on Artix-7 FPGA and ASIC 65nm CMOS technology for

LeNet300100 model. The results indicate that the proposed CSC

hardware outperforms the conventional non-structurally pruned ar-

chitecture with an equal compression rate by ∼2× in power, energy,

area and resource utilization when running at the same frequency.

1 INTRODUCTION

Sparsifying DNNs is a subject of interest because sparsity in DNNs

not only compresses the model, but also allows for computation

reduction by skipping unnecessary computation. Pruning methods

such as L2 regularization [6] can zero-out a large portion of the

weights while maintaining accuracy, and can significantly compress
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the model. However, this compression is achieved at the cost of

irregularity in the patterns of the non-zero weights. The irregularity

results in a necessity for index saving, i.e. instead of saving every

weight, saving the non-zero elements in one memory space, and

their indexes (addresses or pointers) in another. In addition to the

requirement for the extra index memory, another drawback is the

need for two inter-dependent and energy-hungry memory-read

cycles to fetch every weight. The two read-memory cycles can also

deteriorate the bandwidth if the pruned model is stored on a DRAM.

Structural sparsity, or coarse-grained pruning, on the other hand,

is also a current area of research. This has recently been applied

to convolution (CONV) layers and fully connected (FC) layers

[2, 4, 12, 18]. Structural sparsity does not require indexing, avoids

the two read-memory cycles, and can employ simple circuitry or ex-

isting hardware resources to locate non-zero elements. This paper is

complementary to methods in [12, 18] that consider coarse-grained

pruning for only CONV layers. FC layers are the subject of this pa-

per, as they dominate the model size of DNNs such as VGG, AlexNet,

LeNet and nearly every trainable matrix in other domains such as

recurrent neural networks (RNNs) and Long Short-Term Memory

(LSTMs). We make the following contributions in this paper:

• Propose a substitute for the FC layer referred as the CSC layer

which, due to its cyclic connectivity, inherently incorporates

index generation and implicitly performs zero-skipping.

• Propose an algorithm to train models with CSC layers using

a bottom-up approach by incrementally increasing the pa-

rameters such as connectivity and number of synapses, to

achieve a desired accuracy.

• Train AlexNet and LeNet300100 with CSC layers instead

of FC layers, with total compression rates of 10× and 46×
respectively and within a margin of 2% accuracy loss.

• Propose two scalable hardware designs to implement CSC

layers as well as non-structurally pruned FC layers for com-

parison, both adapted to LeNet300100 model with equal com-

pression rate, and fully placed-and-routed on Artix-7 FPGA

and on ASIC in 65nm CMOS technology.

2 RELATEDWORK

A number of recent works have investigated fine-grained [5, 6]

and coarse-grained [12, 18] pruning on DNNs. In [12], vector-level

and kernel-level pruning on the filters of CONV layers is shown

to save the memory references by ∼2× as a result of minimizing

indexing, as well as model compression on par with fine-grained

methods. However, authors in [12] use only fine-grained pruning

for FC layers. Similarly, authors in [18] employ structural sparsity

methods, such as filter-wise, channel-wise, and shape-wise pruning,

and incorporate stochastic gradient descent (SGD) with adaptive

alternation direction method of multipliers (ADMM). In doing so,
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they achieve an increased accuracy of AlexNet with a ∼3× parame-

ter compression of CONV layers. Authors in [2] propose to train the

FC layers such that the resulted weight matrix is a circulant matrix,

upon which utilizing the fast Fourier transform (FFT) can signifi-

cantly reduce computation complexity. By doing so, the memory

footprint is decreased from O(N 2) to O(N ) and the computational

complexity is decreased from O(N 2) to O(NloдN ). CIRCNN [4] is

a principled approach to represent weights using block-circulant

matrices that borrows the method in [2] to generalize the FFT-based

technique to CONV layers as well. Both [2] and [4] require utilizing

the FFT and Inverse FFT in their computations. [14] proposes to

convert dense weight matrices of FC layers to the Tensor Trained

(TT) format [15] and, by employing TT format instead of FC lay-

ers, achieving a compression of ∼7× on VGG models. [3] proposed

PermDNN which is an approach to customizing sparse weight ma-

trices with a diagonalization scheme. PermDNN targets FC layers

in DNNs and LSTMs. It can structurally compress the FC layers of

AlexNet by ∼9× and ∼18.1× with respectively full-precision and

16-bit weights.

3 PROPOSED METHOD

Throughout this paper we use italic lower case letter x to represent

generator polynomials (e.g. p(x) = 1 + x + x2), italic capital letters
(e.g. N ) for integer values, bold lower case letters (e.g. x) for vectors,

bold upper case letters (e.g. W) for matrices, and parenthesis for

the elements of a vector (e.g. y(i)) or a matrix (e.g. W(i , j)).

3.1 Problem Definition

Inspired by the butterfly diagrams such as in the radix-2 FFT, in

this section, we seek sparsely connected (SC) layers composed of a

unidirectional sequence of layers: an Input layer, L − 1 layers in be-

tween referred to as support layers, and an Output layer. We denote

the first (Input) and the last (Output) layers by capitalizing their

first letters. All the consecutive layers in the diagram are connected

to each other via edges (synapses). We call this diagram homoge-

neous if the size of every layer is N nodes, and if its intermediate

connectivity is such that the fan-out of every node in every layer,

excluding the Output layer, as well as the fan-in of every layer,

excluding the Input layer, is exactly F . Therefore, the total number

of edges, E, in this diagram is equal to:

E = NFL (1)

For every layer in the diagram we define an adjacency matrix,

A, whose length and width is equal to the input and output sizes

of the layer respectively (N in this statement) and whose elements

A(i , j) indicate the number of edges that connect the input node

i to the output node j. Therefore, NF out of N 2 elements of the

adjacency matrix of every support layer in our problem statement

are 1s and the rest are 0s . We then define a merit of connectivity,C ,
and constrain the diagram to provide C and only C paths between

every pair of nodes chosen arbitrarily from the diagram Input and

Output layers. For this homogeneous diagram, one can show:

FL = NC (2)

The objective of homogeneity is to provide a basis where every

arbitrary node in the diagram is equally exploited, every arbitrary

pair of nodes from Input and Output layers are as equally connected,

the flux through the support layers is fairly equal, and the rank

of the transforming matrix has the potential to remain full. This

foundation will be proposed as an overlay and replacement for

FC layers, and is defined such that a FC layer of size N -by-N is

concluded as a special case of which (F = N , L = 1, and C = 1).

Combining the equations (1) and (2), a logarithmic relationship

between the number of edges and the size of the layers is deduced:

E = NFloд
F
(NC) (3)

Equations (3) is the pivot of this work. E is the number of edges

that holds the non-zero elements of the L layers and governs the

number of Multiply-Accumulate (MAC) operations in the diagram.

As an example, given F = 2 and C = 1, equations (2) and (3) infer

L = loд
2
N and E = 2Nloд

2
N which is the case in radix-2 butterfly

diagrams. Figs. 1-A, 1-B and 1-C respectively depict a FC layer and

two examples of SC diagrams.

3.1.1 Input/Output Adjustment.

In order to replace a FC of Input size N
I
and Output size N

O
with

a SC that has a different value for N , we tile and truncate only the

Input and Output layers of the SC to match them to those of the

FC layer. To adjust the Input layer to an input vector of size N
I

we remove rows from the bottom of the adjacency matrix if N
I
<N

(truncation), or we recursively copy from the first consecutive rows

of the adjacency matrix and add them to its bottom if N
I
>N (tiling)

until its number of rows is equal to N
I
. For the Output layer to be

adjusted to an output of size N
O
, we manipulate the columns of

the last adjacency matrix similarly. By doing so, the connectivity

between the adjusted Input and Output layers still remains C , but
the fan-in of the layer following the adjusted Input and the fan-out

of the layer preceding the adjusted Output layers deviate from F .
For a SC with parameters N , F , L,C , and adjusted Input and Output
sizes of respectively N

I
and N

O
the number of edges are as:

Ead j = NF (L − 2) + N
I
F + N

O
F (4)

3.1.2 Compression Rate.

Since the adjusted SC diagramwith Ead j synapses is going to substi-
tute a FC layer with N

I
Input nodes, N

O
Output nodes, and N

I
N
O

synapses, the compression rate, denoted by γ , is equal to:

γ =
N
I
N
O

Ead j
(5)

This quantity should clearly be less than 1. It can also be considered

as the average number of synapses from the SC that contribute to

forming every synapse from the equivalent FC. If the SC is homo-

geneous, each of its synapses equally contributes to the formation

of every synapse from the equivalent FC layer. For a FC, γ = 1,

indicating no compression and that all connections are indepen-

dent. For a homogeneous SC, γ = N
Floд

F
(NC) . For SC with adjusted

I/O, the largest value for γ is given by the smallest Ead j , which is

derived for L = 2 and F = 1, that results in γ
most

= (N−1
I
+ N−1

O
)−1

and is equivalant to a rank one FC layer.

3.2 Solution to The Problem Statement

There is no unique solution for structures which meet the above

problem statement. The butterfly diagrams used in the FFT give

one set of solutions. In every radix-2 butterfly diagram F = 2,C = 1,

and L = loд2N . We show that circulant matrices generated from

cyclic codes give another set of solutions for the adjacency matri-

ces of SC layers which satisfy equation (2). From here on, we call

these diagrams cyclic sparsely connected (CSC) layers. Suppose the
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Figure 1: Example of a FC layer and 3 candidates to replace it. In each sub-figure, the adjacency matrices represent the con-

nections, and are generated by generator polynomials. A) A non-pruned FC layer. B) The proposed cyclic sparsely connected

layers type I, with a connectivity of one. C) The proposed cyclic sparsely connected layers type II, with two sub-layers. D) A

representation of the pruned FC layer with irregular connectivity

adjacency matrix Ai (0 ≤ i ≤ L − 1) of every support layer i in our

CSC layers has a generator polynomial p
i
(x) that has F terms and

can generate a cyclic adjacency matrix of block length N . It can be

shown that the product of the L adjacency matrices attributed to

the L layers is a matrix, which we call AT . AT (i, j) represents the

number of paths between the Input node i and Output node j of
the CSC layers. In the problem statement, the connectivity should

be equal toC for all arbitrary pairs of Input and Output nodes, thus

all the elements in the resulting product matrix AT are equal to

C . In other words, AT =CJ where J is an all-one matrix with size

N -by-N . The all-C matrix AT can be attributed to another gen-

erator polynomial p
T
(x) = C∑N−1

i=0 x i . The generator polynomial

(different from the characteristic polynomial of a matrix) constructs

a cyclic matrix as follows: the first row of the matrix corresponds

to the coefficients of the polynomial–represented as big-endian in

this paper–and then, every next row is a cyclic right shift of its

previous row. The cyclic adjacency matrices in this paper are not

ideals as in ideal cyclic codes, and might have non-distinctive rows.

We provide two different factorization sets of p
T
(x).

3.2.1 CSCI: Connectivity Equal to One.
If C = 1 and F , L and N are such that N = FL , then p

T
(x) =∑N−1

i=0 x i can be factorized as:{∑N−1
i=0 x i =

∏L−1
i=0 pi (x)

p
i
(x) =

∑F−1
j=0 xSi .j , Si = F i

(6)

By assigning p
i
(x) as the generator polynomial of support layer i ,

the CSC layers are completely described. Si is the stride value and
indicates the distance between elements of value 1s in the first row

of the adjacency matrix of layer i . Fig 1-B shows a CSCI diagram

with 3 layers, and generator polynomial p
i
(x) = ∑2−1

j=0 x
2i j for the

layer i . For F = 2 and C = 1, the number of edges as well as the

number MAC operations are equal to 2Nloд
2
N , which makes the

computation complexity O(Nloд
2
N ). We evaluate LeNet300100 on

MNIST by replacing FC layers with CSCI.

3.2.2 CSCII: Layers Equal to Two.

For homogeneous diagrams, the compression rate γ is smaller
for less number of layers, and the contributing synapses are less

correlated to build up the equivalent FC layer. If L = 2 and F ,C and

N are such that NC = F 2, then p
T
(x) = ∑N−1

i=0 x i can be factorized

as: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C
∑N−1
i=0 x i = p0 (x).p1 (x) mod(xN − 1)

p0 (x) =
∑F−1
i=0 xS0 .i , S0 = 1

p1 (x) =
∑F−1
i=0 xS1 .i , S1 =

F
C

(7)

By assigning p0 (x) and p1 (x) respectively to the first and second lay-
ers, the CSC layers are completely described. For L = 2, γ = N

2
√
NC

and E =2N
√
NC . For C>N

4 the γ tends to less than 1 that results

in redundancy. For L = 2 and C = 1 the number of MAC opera-

tions are equal to 2N
√
N that makes the computation complexity

O(N√
N ). Fig 1-C shows a CSCII diagram withC = 2, and generator

polynomial p
i
(x) = ∑4−1

j=0 x
2i j for layer i . We evaluate AlexNet on

ImageNet with FC layers replaced with CSCII layers.

3.3 Algorithm: substituting FC with CSC

We propose substituting each FC layer that has learnable weights

such as DNNs and RNNs with CSC layers with or without linear

activation at each support layer and with adjusted Input and Output

sizes to conform to those of the FC layer.

Algorithm 1 shows a bottom-up procedure of replacing FC with

CSC layers. In summary, the model with a FC layer is trained first

and a reference accuracy λ
FC

is obtained. Then, the FC is replaced

with adjusted CSC layers, starting from the most compressed CSC

and increasing in size up to that of the original FC layer. A stopping

criteria ϵ which is the tolerable accuracy loss is defined (2% in

this paper). In each experiment, if λ
FC

is ϵ greater than the λ
CSC

,

the procedure is terminated, and the CSC model is accepted. As

depicted in Fig. 2, we use algorithm 1 to train LeNet300100 and

AlexNet with FC layers respectively replaced with CSCI and CSCII

layers, with 50 epochs and employing SGD optimizer. For AlexNet
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A: LeNet300100 with FC Layers

M
N

IST

FC 1 FC 2 FC 3

T
O
P
1

A
C
C
=

98.4%

Params:     235.5K   +   30.1K   +    1K    =    266.6K    

B: LeNet300100 with CSCI Layers

M
N

IST

CSCI 1 CSCI 2 FC 3

T
O
P
1

A
C
C
=

96.6%

Params:                  2.8K               +                 1.1K                +      1K    =   4.9K  

C: AlexNet with FC Layers

Im
age N

et

FC 1 FC 2 FC 3Conv Layers

T
O
P
5

A
C
C
=

79.1%

Params:             2.5M          +             37.8M  + 16.8M  + 4.1M   =   61.1M     

D: AlexNet with CSCII Layers

Im
age N

et

Frozen Pre-Trained Conv Layers CSCII 1 CSCII 2 CSCII 3

T
O
P
5

A
C
C
=

77.6%

Params:       2.5M               +                 0.9M         +       1M      +     1.3M   =   5.7M     

Figure 2: Configurations of LeNet300100 and AlexNet with

either FC layers or CSC layers. For AlexNet, we use pre-

trained weights for the CONV layers and have them frozen

when training on CSC configs

the pre-trained weights obtained from the baseline model are frozen

for the CONV layers and only the dense layers are re-trained.

After training the CSC layers embedded in the DNN, every

weight matrix Wi from layer i has non-zero weights located at

corresponding non-zero elements of its adjacency matrix Ai . The

weighted CSC layers, which have substituted one FC layer, trans-

form the Input to the Output linearly, given linear activation for

support layers, and can be composed into an equivalent FC layer

with WT =
∏L−1

i=0 Wi . It’s axiomatic that an arbitrary FC layer

with a weight matrix WT can’t be losslessly decomposed into CSC

layers that have fewer synapses in total. However, since training

doesn’t usually produce a concrete solution for WT , we use the

back-propagation algorithm to learn good weights for the CSC

layers. Now, if the W of every support layer with parameters N ,

F , S , and size of N -by-N is redefined and reformed such that it

contains only the non-zero entries (i.e. only the F non-zero terms

corresponding to those of the matrix A), then the new compact

matrix, denoted by Ŵ, has size N -by-F . When multiplied with a

vector x of size N , an output vector y of size N is produced, whose

elements y(i) can be calculated by:

y(i) =
F−1∑
j=0

Ŵ(i, j).x((i + jS) mod N) (8)

We refer to the equation (8) as the circulant product between the

cyclic matrixW (with parameter S as the stride and the compact

form of Ŵ) and the vector x. This equation inherently incorporates

index generation and implicitly performs zero-skipping. If the Input

or the Output layers are adjusted to N
I
or N

O
which are not equal

to N , then the truncation/tiling conditions of the corresponding

adjusted matrix W as explained in the section 3.1.1 are required.

Algorithm 1 Training NN with CSC instead of FC layers

1: Inputs:

2: FC layer with parameters N
I
, N

O
, and a validation accuracy

λ
FC

on a given dataset. A criteria ϵ to terminate the procedure.

A function q(γ ) to propose N ,C, F ,L given a desired compres-

sion rate. Any standard back-propagation training algorithm

train(model). And a decrementing functionγ ← decrement(γ ).
3: Outputs:

4: CSC with parameters N , C , F , L, and validation accuracy λ
CSC

5: procedure Bottom-Up-Training(model)

6: γ ← (N−1
I
+ N−1

O
)−1 � The largest compression, γ

most

7: while λ
FC

− λ
CSC
> ϵ do

8: N ,C, F ,L ← q(γ ) � Propose a CSC|N
I
, N

O
, γ

9: λ
CSC

← train(model |N ,C, F ,L)
10: γ ← decrement(γ ) � Bounded by γ

least
= 1

11: end while

12: return N ,C, F ,L, λ
CSC

13: end procedure

Table 1: Compressing LeNet300100 bymeans of replacing FC

with CSCI layers compared to related pruning methods

Layer
Params.
(Baseline)

Pruning
[6]

Pruning
[5]

CSCI
(This work)

Index Memory Required? yes yes no

FC1 236K 8% 1.8% 1.5%

FC2 30K 9% 1.8% 4.4%

FC3 1K 26% 5.5% 100%

Total 267K 8% (12×) 1.8% (56×) 2.2% (46×)
Top-1 Acc. 98.4% 98.4% 98.0 97.2%

Table 2: Compressing AlexNet by means of replacing FC

with CSCII layers compared to related pruning methods

Layer
Params.
(Baseline)

Pruning
[6]

Pruning
[12]

CSCII
(This work)

Index Memory Required? yes yes no

All CONVs 2.5M 36% 25% 100% (NA)

FC1 38M 9% 7% 2%

FC2 17M 9% 7% 6%

FC3 4M 25% 18% 33%

Total 61M 11% (9×) 8% (12×) 10% (10×)
Top-5 Acc. 79.1% 80.2% 80.4% 77.6%

4 TRAINING EXPERIMENTS

We used PyTorch framework to train LeNet300100 and AlexNet

with CSC layers using the procedure described in Algorithm 1. Fig. 3

shows the impact of replacing FC layers with CSCI and the bottom-

upmethod of increasing the layers andweights for LeNet300100. Fig.

4 shows the impact of the bottom-up method on the top-5 accuracy

of AlexNet throughout training epochs. Tables 1 and 2 show the

compression and the accuracy of the selected CSC configurations

for the two DNNs in this work and compare them with related non-

structural pruningmethods from the literature. It is noteworthy that

in all non-structural pruning methods there exists another implicit

memory space for storing non-zero weight indexes. Thus, if every

non-zero weight requires an index with the same number of bits,

then the actual compression in non-structural pruning methods is

approximately half the reported rate.

5 HARDWARE IMPLEMENTATION

Two hardware designs that implementmultilayer perceptrons (MLPs)

with either CSC layers or pruned FC layers are introduced in this

section. For simplicity, only the blocks that perform matrix-vector
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Figure 3: Impact of the bottom-up method of replacing FC

with CSC layers on the accuracy of LeNet300100 trained

with full-precision weights. In each config, FC1 and FC2 are

replaced with two CSCI diagrams, CSCI1 and CSCI2, and the

last layer remains as FC. For Config 1, CSC layers are one-

node (rank 1) support layers. For Config i (i > 1) CSCI1 has

parameters C1 = 1, F1 = 2, L1 = i + 1, N1 = 2i+1, and CSCI2

has parameters C2 = 1, F2 = 2, L2 = i, N2 = 2i . In total, each

Config i (i > 1) has ET = 2i (6i − 8)+ 3968 trainable parameters
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Figure 4: Impact of the bottom-up method of replacing FC

withCSC layers on the accuracy ofAlexNet vs epoch, trained

with full-precision weights. In all configs, FC1, FC2 and

FC3 are replaced with CSCII diagrams, CSCII1, CSCII2, and

CSCII3, respectively with support layers of size 4096, 4096

and 1024. In Config 1, C1 = 1, C2 = 1, C3 = 4. In Config 2,

C1 = 1,C2 = 4,C3 = 16. In Config 3,C1 = 1,C2 = 4 andC3 = 64.

multiplications are shown in the designs, and the ReLU units and

other control logic are omitted. We will use the LeNet300100, which

is a 3-layer MLP, to test both compression methods.

Fig. 5-top depicts the block diagram of the CSC matrix-vector

multiplication processor which implements the equation (8) in hard-

ware. The schematic is adapted to accommodate the LeNet300100

with CSCI layers that has a model size of ∼6KB (Config 6) and

uses one-byte precision for weights and activations. The schematic

has three memory blocks: Weight, Data and Output. The non-zero

weights are stored in row-major order in the Weight memory. The

read values of the Weight and Data memory units are multiplied

and accumulated once per clock cycle per PE in the MAC units. The

Address Generator Unit generates the indexes for the weight matrix

and the input data using two counters based on the equation (8),

and is updated with the parameters and the starting address (Layer

Offset) of the layer-under-process. The State Machine updates the

Address Generator with the layer’s parameters, controls the condi-

tions of tiled/truncated layers, and switches the task between the

Data and Output memory units alternately.
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Figure 5: Schematic for the CSC architecture (top) and con-

ventional non-structurally pruned architecture processor

(bottom), which requires the highlighted index memory.

Both adapted to accommodate compressed LeNet300100.

Fig. 5-bottom implements the same logic as in the Fig. 5-top, but

incorporates Indexmemory and logic to handle the indexing scheme

in non-structurally pruned MLPs. If LeNet300100 is compressed

with a non-structural pruning method producing ∼6K non-zero

parameters, then it will require a 19 bit index per non-zero weight,

10 bits of which are column-pointers and 9 bits of row-pointers

to the non-zero weights of the pruned W, thus requiring an ex-

tra ∼6K×19-bit index memory. The column-pointers address Data

memory, while the row-pointers address Output memory. The row-

pointers are compared with their previous read value to determine

the next MAC operation, then the accumulation is stored at the

Output memory. The State Machine controls processing of each

layer of the MLP. Similar to the CSC hardware design, this design

also performs 1 MAC per clock cycle per PE.

The two hardware designs can be configured to employ an arbi-

trary number of PEs to speed up the computation and to improve

energy efficiency. For each PE, the Data and Output memory units

along with the logic are replicated while the Weight memory (and

Index memory in the conventional architecture) is equally divided

among the PEs. Output memory synchronization is performed after

computing each layer to unify the divided output data in the Output

memory and prepare them as the input data for the next layer.

5.1 FPGA Implementation Results

The two hardware designs for LeNet300100 are implemented using

Verilog HDL, with 1, 4 and 8 PEs. Each configuration is synthesized

and placed-and-routed using Xilinx Vivado tools on the low-power

Xilinx Artix-7-15T FPGA which has sufficient on-chip Block RAMs

(BRAMs) to store the model weights as well as the input and inter-

mediate data. Table 3 summarizes the implementation results for 1,

4 and 8PEs at clock frequency of 150 MHz and indicates that the

dynamic power as well as the BRAM usage of the CSC processor
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Table 3: Artix-7 FPGA implementation results of the CSC

and conventional non-structurally pruned networks for

LeNet300100 at clock frequency of 150 MHz.

Case Studies CSC (This work) Non-Structurally Pruned

# of PEs 1 4 8 1 4 8

BRAM 3 6 12 7 12 20

# of slices 133 443 874 146 416 812

Latency (us) 50.7 14.7 8.7 50.7 14.7 8.7

Throughput(Kilo label/s) 19.7 68.2 114.4 19.7 68.2 114.4

Dynamic Power (mW) 8 27 52 24 57 98

Total Power (mW) 79 98 123 94 127 168

Classification Energy (uJ) 4.00 1.44 1.08 4.76 1.86 1.47

Table 4: Post place-and-route results of the processors with

1 PE for CSC and conventional non-structurally pruned ar-

chitectures for LeNet300100 on ASIC CMOS 65nm, 1.1v at 1

GHz. The "Total" column includes the logic power as well.

Case Studies
CSC (This work) Non-Structurally Pruned

Weight
Memory

Index
Memory

Data
Memory

Output
Memory

Total
Weight
Memory

Index
Memory

Data
Memory

Output
Memory

Total

Height (mm) 0.36 0 0.10 0.71 0.36 0.36 0.36 0.10 0.71 0.36

Width (mm) 0.19 0 0.12 0.12 0.31 0.19 0.37 0.12 0.12 0.68

Area (mm2) 0.07 0 0.01 0.08 0.10 0.07 0.13 0.01 0.08 0.24

Utilization (%) - - - - 97.2 - - - - 95.6

Power (mW) 1.1 0 0.34 0.17 2.15 1.1 1.68 0.35 0.17 4.07
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Figure 6: Impact of number of PEs for implemented in ASIC

65nm, 1.1v at 1 GHz on energy for CSC (left) and conven-

tional non-structurally pruned (right) for LeNet300100

on the FPGA is ∼2× less than the conventional non-structurally

pruned processor architectures.

5.2 ASIC Implementation Results

Both designs were synthesized with different number of PEs using

RC Compiler, and were post place-and-routed with the 65nm TSMC

CMOS standard cell library using Encounter SOC fromCadence. Fig.

7 shows the ASIC layouts for the single PE CSC and conventional

non-structurally pruned architectures. Table 4 contains more details

including the chip power, area and utilization for the two single

PE designs. Fig. 6-(left) and Fig. 6-(right) show the classification

energy curves vs the number of PEs for the CSC processor and

the conventional non-structurally pruned architecture processor

for LeNet300100 with 8-bit and 32-bit precision weights. The two

curves indicate that each configuration of the CSC architecture

consumes ∼2× less energy than its corresponding conventional

non-structurally pruned architecture.

6 CONCLUSION

Inspired by the radix-2 FFT butterfly diagrams, we introduced cyclic

sparsely connected (CSC) layers, a new architecture that is com-

posed of a few sequential layers whose memory usage and MAC

computation is O(NloдN ) and whose structural connectivity can

be adjusted to form a suitable replacement for FC layers, which

are intrinsically memory intensive in DNNs. We also propose a

bottom-up method of replacing FC layers with CSC layers. Due to

its structural nature, the CSC layer eliminates the need for indexing
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Figure 7: The post-layout views of CSC (left) and conven-

tional non-structurally pruned (right) architectures (1PE)

for LeNet300100, in 65nm TSMC CMOS tech. The key differ-

ence is the large indexmemory required in the latter design.

the non-zero weights. Our experimental results show that by replac-

ing FC with CSC layers in LeNet300100 and AlexNet, the models

can be compressed on par with non-structural pruning methods

for full-precision weights. For comparison, we implemented a scal-

able parallel hardware architecture for the CSC and conventional

non-structurally pruned layers both on Artix-7 FPGA and ASIC

65nm CMOS. Our results show that CSC design outperforms the

conventional by ∼2× both in energy and area.
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