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Abstract—This paper presents SensorNet which is a scalable
and low-power embedded deep convolutional neural network
(DCNN), designed to classify multimodal time series signals.
Time series signals generated by different sensor modalities
with different sampling rates are first converted to images
(2-D signals), and then DCNN is utilized to automatically learn
shared features in the images and perform the classification.
SensorNet: 1) is scalable as it can process different types of
time series data with variety of input channels and sampling
rates; 2) does not need to employ separate signal processing
techniques for processing the data generated by each sensor
modality; 3) does not require expert knowledge for extracting
features for each sensor data; 4) makes it easy and fast to
adapt to new sensor modalities with a different sampling rate;
5) achieves very high detection accuracy for different case studies;
and 6) has a very efficient architecture which makes it suitable
to be deployed at Internet of Things and wearable devices.
A custom low-power hardware architecture is also designed
for the efficient deployment of SensorNet at embedded real-
time systems. SensorNet performance is evaluated using three
different case studies including physical activity monitoring,
stand-alone tongue drive system, and stress detection, and it
achieves an average detection accuracy of 98%, 96.2%, and
94% for each case study, respectively. We implement Sensor-
Net using our custom hardware architecture on Xilinx FPGA
(Artix-7) which on average consumes 246-uJ energy. To further
reduce the power consumption, SensorNet is implemented using
application-specified integrated circuit at the post layout level
in 65-nm CMOS technology which consumes approximately
8x lower power compared to the FPGA implementation. In addi-
tion, SensorNet is implemented on NVIDIA Jetson TX2 SoC
(CPU + GPU) and compared to TX2 single-core CPU and GPU
implementations, FPGA-based SensorNet obtains 15x and 4x
improvement in energy consumption.

Index Terms— Multimodal time series, deep neural networks,
energy efficiency, FPGA, low power, embedded systems,
classification.
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I. INTRODUCTION

IME series data is a sequence of data points in time

order, that is gathered in different kinds of domains
from healthcare [1], [2] where one can track a patient’s vital
signs (heart rate, blood pressure), to fitness and wellness
where one can monitor a person’s activity [3], to engines
in cars and power plants using sensors. Hence, modeling
and classifying time series has a wide range of applications.
All these datasets are represented by a time series which
is univariate or multivariate (multimodal) depending on the
number of sensor modalities being measured. Multimodal
signals are generated by different sensors usually with different
sampling frequencies such as accelerometers, magnetometers,
gyroscopes and heart rate monitors. Multimodal devices can
increase the number of alternatives available to users to
perform different tasks simultaneously.

Traditionally, time series classification problems have
been solved with approaches like Dynamic Time Warp-
ing (DTW) [4] and k-nearest neighbor (k-NN) [5]. These
methods or a combination of them provide a benchmark for
current time series classification research [6]. However, there
are some challenges with applying these methods: 1) different
signal processing techniques such as feature extraction and
classification are needed to process the data generated by
each sensor modality, which can lead to a long design time,
2) requires expert knowledge in designing the features, and
3) is unscalable when adding new sensor modalities.

Recently, Deep Neural Networks (DNN) have become pop-
ular for multimodal time series signals processing [7]-[16].
However, DNN solutions usually have large and power-hungry
architectures which is not suitable for deployment at Internet
of Things (IoT) and wearable devices.

In this paper, Sensornet shown in Fig. 1 is proposed which
is a scalable Deep Convolutional Neural Network (DCNN)
designed to classify multimodal time series signals in embed-
ded, resource-bound settings that have strict power and area
budgets. SensorNet: (1) is scalable as it can process different
types of time series data with variety of input channels and
sampling rates. (2) does not need to employ a separate signal
processing techniques for processing the data generated by
each sensor modality. (3) does not require expert knowledge
for extracting features for each sensor data. (4) achieves very
high detection accuracy for different case studies. (5) has
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Fig. 1. High-level diagram of the proposed Sensornet.

a very efficient architecture which makes it suitable to be
deployed at low power and resource-bound embedded devices.

This paper makes the following major contributions:

o Propose SensorNet, which is a scalable Deep Con-
volutional Neural Network for multimodal signals
classification

o Perform extensive hyperparameter optimization for
SensorNet with the goal of reducing power consumption
and memory requirements while achieving high detection
accuracy

o Evaluate SensorNet performance in terms of detection
accuracy, memory requirements and number of computa-
tions using three real-world case studies including Phys-
ical Activity Monitoring, stand-alone dual-mode Tongue
Drive System and Stress Detection

o Propose a custom low power hardware architecture for
efficient deployment of SensorNet at [oT and wearable
devices, which can perform the entire signal processing
in real-time

o Implement SensorNet on FPGA and post layout ASIC
in 65-nm CMOS technology and provide results and
analysis in terms of power consumption, latency and
resource utilization for all three case studies

« Implement SensorNet on embedded NVIDIA Jetson SoC
TX2 commercial platform and provide comparisons with
FPGA and ASIC results

The rest of this paper is organized as follows: Related

prior work is provided in Section II. Section III describes the
proposed SensorNet architecture design. Section IV provides
the experimental results and analysis. Section V explores
different hyperparameters optimization. Hardware architecture
design is discussed in Section VI. Hardware implementation
results are provided in Section VII. Finally, we conclude
in Section VIII.

II. RELATED WORK

In recent years, several multimodal data classification
approaches have been proposed which are discussed in this
section. Wang and Oates [9] first converted time series into
images and then used CNN for processing. The authors con-
verted the time series into an image using two types of repre-
sentations, i.e., Grammian Angular Fields (GAF) and Markov
Transition Fields (MTF). The above mentioned architectures
either modeled each variable separately before correlating
them or required preprocessing the stream into an image.
Zheng et al. [8] proposed an architecture which employs a
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CNN per modality (variable) that processes each variable sepa-
rately and then correlates them using a fully (dense) connected
layer. They tested their network on two different datasets
including Physical Activity Monitoring and Congestive Heart
Failure Detection and they achieved a detection accuracy
of 93% and 94%, respectively. Ordéfiez and Roggen [10] pro-
posed a generic deep framework for activity recognition based
on convolutional and LSTM recurrent units and evaluated
their framework on the Opportunity and the Skoda datasets.
Vepakomma ef al. [11] proposed A-Wristocracy, a Deep
Learning Neural Network-based framework for recognizing
in-home activities of human users with wrist-worn device
sensing. They validated 22 daily activities and achieved 90%
test accuracy. Their network consists two hidden layers and is
designed specifically for their sensing system. Li ef al. [12]
introduced a system that recognizes concurrent activities from
real-world data captured by multiple sensors of different types
using 7 layers CNN that extracts spatial features, followed
by a long-short term memory network that extracts temporal
information in the sensory data. They tested their system
with three datasets. Their proposed network has 27M model
weights which requires a large memory for saving on an
embedded system. Yao et al. [13] proposed DeepSense which
is a deep learning framework for time series mobile sensing
data processing. DeepSense integrates convolutional and RNN
to exploit and merge local interactions among similar mobile
sensors and extract temporal relationships to model signal
dynamics. They deployed DeepSense at Nexus5 and Intel
Edison and reported latency and power consumption results.
Guan and Ploetz [14] proposed Ensembles of deep LSTM
learners for Activity Recognition using Wearables. They tested
their approach on three different datasets including Opportu-
nity, PAMAP2 and Skoda. Jiang and Yin [15] proposed an
approach that assemble signal sequences of accelerometers
and gyroscopes into a novel activity image, which enables
Deep CNN to automatically learn the features from the activity
image for the activity recognition task. 2D Discrete Fourier
Transform is applied to the signal image and its magnitude is
chosen as their activity image. Rajpurkar et al. [16] proposed a
cardiologist-level arrhythmia detection using a 34-layer CNN
and they exceed the average cardiologist performance in both
sensitivity and precision. Basterretxea er al. [17] proposed
a solution for multimodal activity recognition on FPGA, which
uses different signal processing algorithms including feature
extraction, Principle Component Analysis (PCA) and a 2-layer
Neural Network.
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The proposed Sensornet architecture which consists of different kinds of layers. The network takes a 1-channel image (constructed from the raw

sensor signals) as input and consists of 5 convolutional layers, 3 pooling layers, 1 dense layer and a softmax layer (for prediction). The architecture is denoted
by 32(Mx5)-16(1 x 5)-2-16(1 x 5)-8(1 x 5)-2-8(1 x 5)-2-64-N and its generic notation is Cj(size)-Ca(size)-S1-C3(size)-Cy(size)-S2-Cs(size)-S3-H-N.Cq..Cs
are the convolutional layers, S7..S3 are the max-pooling layers, Hj is the size of dense layer and N is the softmax layer of size N.

In summary, most of the previous work do not propose a
real-time hardware solution for multimodal time-series data
classification or use general-purpose processors [13], [18]
which results in high power consumption. Also, the archi-
tecture developed in previous work are not efficient for
hardware deployment at IoT and wearable devices [8], [14].
Furthermore, some of the previous related work require expert
knowledge in designing the features which results in a long
design time [19] and those work are not scalable when adding
new sensor modalities.

III. SENSORNET ARCHITECTURE DESIGN

An overview of the proposed SensorNet architecture is
discussed here. SensorNet is designed to capture correlations
between various modalities simultaneously. To capture these
correlations, depends on the application a snapshot of raw
signals with a fixed window size is converted to an image (2-
D signal) and is passed to the network and is processed.
Fig. 2 shows a high-level block diagram of the proposed
system which consists of preprocessing, convolutional, fully
connected and softmax layers.

A. Signal Preprocessing

Consider a given time series that consists of M modali-
ties/variables with same or different sampling frequency. Prior
to training, each variable is independently normalized using
the /2 norm. To generate an image from the normalized
variables, a sliding window of size W and step-size S is
passed through all variables, creating a set of images of shape
1 x W x M (single channel image). The label associated with
this image depends on the dataset. The datasets used to test
the network in this paper contain a label for every time step.
Since a single label is assigned to each image, the label of the
current time step is taken as the label of the image (and the
label that needs to be predicted subsequently while testing).
A given image generated at time-step I, has the prior states
of each variable from (t — W + 1)...t. Thus, the network
can look back W prior states of each variable and given the
current state of each variable, predicts the label.

B. Neural Network Architecture

Fig. 2 shows SensorNet architecture. It consists of
5 convolutional layers, 1 fully connected and a softmax layer
that is equivalent in size to the number of class labels

(depending on the case study). In the pre-processing stage,
SensorNet takes the input time series data and fuses them into
images. Then, the images are passed into the convolutional
layers and some features which are shared across multiple
modalities are generated using a set of local filters. Then,
these features are fed into the fully-connected and the softmax
layers. SensorNet architecture including number of layers,
number of filters and filter shapes for each layer are chosen
based on an extensive hyperparameter optimization process
which will be discussed in details in Section V.

First, second, third, fourth and fifth convolutional layers
contain 32, 16, 16, 8 and 8 filter sets, respectively. The
convolution filters have a height of either M or 1, because
it’s assumed that there are no spatial correlations between the
variables. Also, the ordering of variables prior to generating
images doesn’t affect the ability of the network to perform
classification. A filter of height M or 1 remains unaffected by
the ordering of the variables. Therefore, the filter size for the
first convolutional layer is M x 5 where M is number of input
modalities. For other layers, filter shape of 1 x 5 is chosen.

Max-pooling is applied thrice, once after the second convo-
lutional layer, then after the fourth convolutional layer and the
last one after the fifth convolutional layer. A max-norm regu-
larization of 1 is used to constrain the final activation output.
The pooling size for all max-pooling layers is 1 x 2. Once
the convolution operations have been performed, the image is
flattened into a single vector so that a fully connected layer
can be added.

Two fully connected layers are employed in SensorNet
which the first one has a size of 64 nodes and the second
one has a size equivalent to the number of class labels with
Softmax activation. All the layers of the network have their
weights initialized from a normal distribution. A learning
rate of 0.0001 is used to train the network. Rectified Linear
Unit (ReLU) is used as activation functions for all the layers.
The network is trained using backpropagation and optimized
using RMSprop [20]. Categorical crossentropy is used as the
loss function. Following is the loss function:

N
—1 . . . .
L(yps ya) = o7 * 2 _[valogy, = (1 = yplog(1 = )1 (1)
i=1
where, y, is the predicted label and y, is the expected label.

As shown in algorithm 1, there are three main functions
defined:
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TABLE I
INFORMATION FOR THREE DIFFERENT CASE STUDIES INCLUDING PHYSICAL ACTIVITY MONITORING, sdTDS AND STRESS DETECTION

Application # of Activity labels Sensors Position Sampling Rate (Hz) # of Subjects # of Channels
Physical Activity 12 Chest & Arm & Ankle 100 & 9 8 40

Tongue Drive 12 Headset 50 2 24
Stress Detection 4 Wrist & Finger 8&1 20 7

Algorithm 1 Train SensorNet to Predict Labels (Actions)

Input: The Network N as defined in Figure 2. An input
dataset D of size k (d;..dy) sampled from various
sensors with each point having M attributes.

Output: Predict the class label /; for a datapoint d;

# Consider the training batch size to be b, the learning

rate LR and reshape() changes the shape of the tensor.

# W is the size of the sliding window.

# epochs is the number of epochs for which the model is

trained.

# For categorical crossentropy refer to Eq.1

# Xirqin 1S a list of images and yy-4in has the expected

labels.

for i < W to D do
#_After reshape the tensor is of shape (1, W, M)

xzrain = reshape(d;_w+1..d;)
L ytlrain = li
# Train the model.
for e <— 1 to epochs do
for j < 11¢to L%J do
batch = x;pqinlj % b : (j + 1) % b]
Ypred = forwardpass(N, batch)
loss = L(ypred7 YerainlJ * b: (.] + 1) * b))
g = backwardpass(loss)
gradientupdate(g)

return N

o Reshape: This function reshapes a given tensor into
another form. We transform a 2D matrix to a 3D tensor
with the first axis as 1 representing a single channel.

« Forwardpass: It is a single complete processing of the
input image to predict the label (for the given dataset).

« Backwardpass: It computes the gradient of weights with
respect to the loss function (required to perform gradient
descent).

o GradientUpdate: This function updates the weights
using the gradient and the defined learning rate.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, SensorNet is evaluated using three real-world
case studies including Physical Activity Monitoring [21],
stand-alone dual-mode Tongue Drive System (sdTDS) [22]
and Stress Detection [23] and in-depth analysis and experi-
mental results are provided.

The information for all the case studies are shown in Table I.
As it can be seen from the Table, the sampling rates of the
sensors for each case study are different in range of 1 Hz

to 100 Hz. Also, the sensors are placed in variety of spots
on human body including chest, arm, ankle, head and hand
fingers. The number of channels for each case study refers
to the number of input time series signal which are received
simultaneously by SensorNet. Physical Activity Monitoring,
sdTDS and Stress Detection case studies can be considered to
generate large, medium and small size datasets.

For all the case studies, SensorNet is trained using
Keras [24] with the TensorFlow as backend on a NVIDIA
1070 GPU with 1664 cores, 1050 MHz clock speed and
8 GB RAM. Models are trained in a fully-supervised way,
backpropagating the gradients from the softmax layer to the
convolutional layers.

A. Case Study 1: Physical Activity Monitoring

1) Dataset: ~ Physical  Activity —Monitoring dataset
(PAMAP2) [21] records 12 physical activities performed by
9 subjects. The physical activities are, for instance: ‘standing’,
‘walking’, ‘lying’ and ‘sitting’. Three IMUs (inertial
measurement units) and one heart rate monitor are placed
on chest, arm and ankle to record the data. The sampling
frequency of the IMU sensors is 100 Hz and the heart rate
monitor sensor has a sampling frequency of 9 Hz. In total,
the dataset includes 52 channels of data but 40 channels
are valid according to [21]. Also, out of 9 subjects the data
of 8 subjects are used, as subject 9 has a very small number
of samples.

2) Experiment Setup and Results: As we mentioned in
Section III, SensorNet utilizes 5 convolutional layers, followed
by 2 fully-connected layers. First convolutional layer has
32 filter sets and each filter size is 40 x 5. Other con-
volutional layers have 16, 16, 8 and 8 filter sets with a
size of 1 x 5. For this experiment, 80%, 10% and 10% of
the entire data for each subject is chosen randomly as the
training, validation and testing set, respectively. To determine
the number of required epochs for the training, we train
SensorNet for 150 epochs and plot validation and training loss
and accuracy results. As is shown in Fig. 3, after 100 epochs
the validation loss and accuracy are stable and satisfactory.
Therefore, for all the experiments for this dataset we train
SensorNet with 100 epochs.

After training SensorNet, we evaluate the trained model
to determine the detection accuracy. Fig. 4 shows the clas-
sification accuracy of SensorNet for the Physical Activity
Monitoring case study for different subjects with a sliding
window of size 64 samples and step-size of 1-16-32-64. As can
be seen from the figure, all subjects with step-size 1 achieve
a high detection accuracy. However, as the step-size increases
from 1 to 64 the detection accuracy decreases. The average
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Fig. 3. Error and accuracy of the training and validation sets for Physical
Activity Monitoring case study over 150 epochs. The vertical dashed line
indicates the determined epoch.
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Fig. 4. Comparison of SensorNet classification accuracy for Physical Activity
Monitoring case study. The results are for different subjects with a sliding
window of size 64 samples and step-size (SZ) of 1-16-32-64.

accuracy of all subjects with step-sizes of 1, 16, 32 and 64 are
98%, 94%, 93% and 86%, respectively.

B. Case Study 2: Stand-Alone Dual-Mode Tongue
Drive System (sdTDS)

1) sdTDS Overview and Experimental Setup: In [22],
we proposed and developed stand-alone Tongue Drive Sys-
tem (sTDS) which is a wireless wearable headset and individu-
als with severe disabilities can use it to potentially control their
environment such as computer, smartphone and wheelchair
using their voluntary tongue movements [25]. In this work,
in order to expand the functionality of sTDS, we propose
a stand-alone dual-mode Tongue Drive System (sdTDS) by
adding head movements detection to the previous version.
Fig. 5 shows sdTDS prototype which includes a local proces-
sor, four magnetic and acceleration sensors, a BLE transceiver,
a battery and a magnetic tracer which is glued to the user’s
tongue. Two magnetic and acceleration sensors are placed on
each side of the headset and the processor is placed in a box
at backside of the headset. The box is also used for placing a
battery and it’s weight is around 0.14 1b. The box is designed
using 3D printing technology. In order to generate user-defined
commands, user should move his/her tongue to 7 specific
teeth or move his/her head to 5 different directions. The raw

sdTDS
headset

Right
sensors

Magnet

Fig. 5. sdTDS prototype placed on a headset which includes a FPGA,
four acceleration and magnetic sensors, a Bluetooth low energy transceiver,
a battery and a magnetic tracer which is glued to the user’s tongue.

data generated by 4 magnetometers and accelerometers are
transferred into a FPGA processor where the entire signal
processing including feature extraction and classification is
performed by SensorNet and 12 different user-defined com-
mands can be generated.

2) Experiment Results: Several different data sets are cap-
tured using sdTDS for training and testing purpose. sdTDS
generates 24 channels of time series data that corresponds
to tongue and head movements. As it was mentioned in
Section III, SensorNet utilizes 5 convolutional layers, followed
by 2 fully-connected layers. For the sdTDS, first convolutional
layer has 32 filter banks and each filter size is 24 x 5. Other
convolutional layers have 16, 16, 8 and 8 filter banks with a
size of 1 x 5. For this experiment, 80%, 10% and 10% of the
entire data for each trivial is chosen randomly as the training,
validation and testing sets, respectively. We train SensorNet
for 100 epochs.

After training SensorNet using sdTDS dataset, we evaluate
the trained model to determine the detection accuracy. Based
on previous experiments, we train and test the sdTDS with a
sliding window of size 64 samples and step-size of 1, as the
step-size of 1 gives better detection accuracy, consistently. For
sdTDS case study, SensorNet detection accuracy for tongue
and head movements detection is approximately 96.2%.

C. Case Study 3: Stress Detection

1) Dataset: This database contains non-EEG physiological
signals used to infer the neurological status including phys-
ical stress, cognitive stress, emotional stress and relaxation
of 20 subjects. The dataset was collected using non-invasive
wrist worn biosensors. A wrist worn Affectiva collects
electrodermal activity (EDA), temperature and accelera-
tion (3D); and a Nonin 3150 wireless wristOx2 collects
heart rate (HR) and arterial oxygen level (SpO2) data [23].
Therefore, in total the dataset includes 7 channels of data.
The sampling frequency of wrist worn Affectiva is 8 Hz and
wristOx2 has a sampling frequency of 1 Hz.

2) Experiment Setup and Results: As it was discussed in
Section III, SensorNet utilizes 5 convolutional layers, followed
by 2 fully-connected layers. First convolutional layer has
32 filter sets and each filter size is 7 x 5. Other convolutional
layers have 16, 16, 8 and 8 filter sets with a size of 1 x 5.
Similar to Physical Activity Monitoring case study, for this
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Fig. 6. Comparison of SensorNet classification accuracy for Stress Detection
case study. The results are for different subjects with a sliding window of size
64 samples and step-size of 1.

experiment 80%, 10% and 10% of the entire data for each
subject is chosen randomly as the training, validation and
testing set, respectively. To determine the number of required
epochs for the training, we train SensorNet for 150 epochs
and plot validation and training loss and accuracy results.
After 100 epochs the validation loss and accuracy are stable
and satisfactory. Therefore, for all the experiments for this
dataset we train SensorNet with 100 epochs. Fig. 6 shows the
classification accuracy of SensorNet for Stress Detection case
study for 20 different subjects. As is shown in the figure, most
of the subjects have a high detection accuracy more than 90%.
The average accuracy of all 20 subjects is approximately 94%.

V. SENSORNET OPTIMIZATION AND
COMPLEXITY REDUCTION

As it was discussed in section III, SensorNet utilizes 5 con-
volutional layers, followed by 2 fully-connected layers. First
convolutional layer has 32 filter sets and each filter size is
M x 5, where M is the number of input channels. Other
convolutional layers have 16, 16, 8 and 8 filter banks with
a size of 1 x 5. The first fully-connected layer has 64 nodes
and the number of nodes in the last one is equivalent to
the number of labels for any specific application. In this
section, we explain the reason behind of choosing SensorNet
architecture and parameters.

One of the primary objectives of this paper is to be able
to efficiently deploy SensorNet at IoT and wearable devices
which have strict power and area budgets. Therefore, we per-
form extensive hyperparameter optimization for SensorNet
with the goal of reducing memory requirements, hardware
complexity and power consumption while achieving high
detection accuracy. In this section, we specifically explore the
impact of changing the following parameters or configurations
on SensorNet performance: /) Number of convolutional layers,
2) Number of filters, 3) Filter shapes, 4) Input zero-padding,
and 5) Activation functions.

A. Number of Convolutional Layers

In this experiment, we compare six SensorNet configu-
rations with an increasing number of convolutional layers,
for the three different case studies. These 6 configurations
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Fig. 7. Comparison of six different SensorNet configurations. M and L
are the number of input data channels and labels for different case studies,
respectively.
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are depicted in Fig. 7. The comparison has been made in
terms of detection accuracy, number of convolutional oper-
ations, number of parameters (model weights) and memory
requirements. Fig. 8-A, 8-B, 8-C and 8-D depict the impact of
increasing the number of convolutional layers on the number
of model parameters and memory requirements. As is shown
in the figures, by increasing the number of convolutional
layers, the total number of model parameters and memory
requirements decrease which is desired. The reason is that we
use three max-pooling layers after the convolutional layers,
therefore by adding more convolutional layers the size of
the time series images shrink and the fully-connected layer
needs to process less number of data and thus requires less
memory. Fig. 8-E shows the impact of increasing the number
of convolutional layers on detection accuracy. As it can be seen
from the figure, if the neural network is too shallow high-level
features can not be learned, therefore the detection accuracy is
low. However, the results show that, by increasing the number
of convolutional layers detection accuracy increases but up
to 5 convolutional layers. After that, for Activity Monitoring
and sdTDS case studies the accuracy improve slightly but
for the Stress Detection reduces because the useful features
may be filtered out during the convolutional and max-pooling
processes. Also, by adding additional convolutional layer the
number of operations to finish a classification task increases
slightly which is shown in Fig. 8-F. This analysis results show
that SensorNet with 5 convolutional layers is the best candidate
with regards to detection accuracy, number of convolutional
operations and memory requirements.

B. Number of Filters

The number of filters (weights) are another important
hyperparameter for implementing SensorNet on low power
and resource-limited embedded devices because the number
of model weights affect the memory requirements and also
the number of required computations to finish a classification
task. The number of required computations has a direct effect
on energy consumption. In this experiment, we keep the
number of convolutional layers fixed (5 layers) and increase
the number of filters for each layer as is shown in Fig. 9.
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Fig. 9. SensorNet configurations with four different filter sets. Number of
filters for convolutional layers are doubled for each filter set. M and L are the
number of data channels and labels for different case studies, respectively.

The goal of this experiment is to find the impact of the number
of filters on the detection accuracy, number of convolutional
operations, number of parameters (model weights) and mem-
ory requirements for Physical Activity Monitoring, sdTDS
and Stress Detection case studies. Therefore, SensorNet is
trained and tested using four different configurations with
different number of filter sizes. Fig. 10 shows a comparison of
number of required parameters (model weights) for different
trained models. Model weights includes the parameters for
convolution, fully-connected and softmax layers. As is shown
in the figure, as we increase the number of filters for each
layer, the detection accuracy improves. However, the number
of operations, memory requirements and the number of model
parameters increase which is not desire for hardware imple-
mentation in a resource limited embedded platform.

Based on the results, SensorNet with different filter sets
achieves similar detection accuracies, but Set 4 needs lower
number of parameters and requires smaller memory compared
to other filter sets and therefore is chosen to be implemented
on hardware.

C. Filters Shapes

Another important parameter for implementing SensorNet
on low power embedded platforms is the filter shape. As it
was explained in Section III the idea is to generate some
shared features between different input modalities. Therefore,
we choose to have the filters with size M x 5, where M is
the number of input modalities, for the first convolutional
layer. For other convolutional layers the filters are 1 x 5.
By employing this size of filter without zero padding the
outputs of the first layer are 1-D vectors and the following
layers also will be 1-D vectors. This will improve the memory
requirements on an embedded platform drastically; because
the feature maps will be 1-D signal which compared to an
image is much smaller. Also, smaller number of model weights
are needed as the dense layer takes 1-D vectors rather than
images. Furthermore, it reduces the the number of operations
which this affects the energy consumption directly, when is
implemented on an embedded platform.

In this experiment we change the filters shapes for the first
convolutional layer to M x5, 5x5,3x3 and 1 x5 for Physical
Activity Monitoring, sdTDS and Stress Detection case studies.
Based on the results, filter size of M x 5 gives better detection
accuracy compared to 5 x 5, 3 x 3 and 1 x 5 filter sizes, as is
shown in Fig. 11. Also, another interesting finding is that,
for the dataset with more number of input channels, choosing
M x 5 filter size give better accuracy compared to smaller
datasets. Because, the small size filters can cover most of the
input channels in the smaller dataset but not in the dataset
with many input channels.

D. Zero-Padding

In this experiment we explore the impact of input data zero-
padding in the first convolutional layer on detection accuracy,
for Physical Activity Monitoring, dTDS and Stress Detection
case studies. Input zero-padding makes the output of the con-
volutional layer to be similar or same as the input to the layer.
Based on the results shown in Fig. 12, zero-padding the input
data helps with accuracy, although it increases the number
of parameters and memory requirement. As it can be seen
from the figure, by applying the zero-padding, the detection
accuracy increases by 4.6%, 3.4% and 3.8% for Physical
Activity Monitoring, sdTDS and Stress Detection case studies,
respectively. However, total memory requirements and number
of operations are increased 9x, 24 x, on average which will
affect the power consumption negatively as well. Therefore,
we choose to implement SensorNet without zero-padding on
the hardware.

E. Activation Functions

In Section III, we mentioned that Rectified Linear
Unit (ReLU) activation functions is efficient because it
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Comparison of SensorNet detection accuracy for four different filter

requires few operations to perform. Therefore, it reduces
the hardware complexity on a hardware embedded setting.
In all the convolutional layers we use ReLLU as the activation
function. Typically Sigmoid is used as the activation function
for the fully-connected layer. However, Sigmoid introduces
hardware complexity to the design which is not desired. Thus,
in this section, we explore SensorNet detection accuracy by
employing different activation functions in the fully-connected
layer. In this experiment, we train SensorNet for stand-alone
dual-mode Tongue Drive System case study using ReLU as
the activation function for all the convolutional layers and
using three activation functions including Sigmoid, Tanh and
ReLU for the fully-connected layer. The performance results
in terms of training accuracy during 100 epochs is shown
in Fig. 13. As it can be seen from the figure, SensorNet using
any of Sigmoid, Tanh and ReL.U activation functions achieves
similar accuracies eventually and using different activations
function does not affect what SensorNet can learn. Therefore,
we choose ReLLU as the activation function for all the layers
because it has less hardware complexity compared to other
activation functions and achieves comparable training and
testing accuracy.

VI. SENSORNET HARDWARE ARCHITECTURE DESIGN

Hardware architecture design for SensorNet faces several
challenges such as computational model implementation, effi-
cient parallelism and managing memory transfers. Following
are the objective for the hardware architecture design: con-
sumes minimal power, meets latency requirement of an appli-
cation, occupies small area, needs to be fully reconfigurable

and requires low memory. Also, we design SensorNet hard-
ware architecture to be fully reconfigurable, because different
applications have different requirements. Parameters such as
number of convolutional and fully-connected layers, filter
shapes and number of filters are configurable.

Fig. 14 depicts SensorNet hardware architecture with imple-
mentation details. This architecture is designed based on
Algorithm 1 which was depicted and explained in Section III.
The main components of SensorNet on hardware consists of
the following:

(A) Convolutional Performs convolutional layer operations.
Also, this block includes ReLU activation logic. PE refers
to convolution Processing Engine.

(B) Max-pooling Performs max-pooling operations.

(C) Fully-connected Performs fully-connected layer opera-
tions. The fully-connected block includes ReLU and
softmax activation functions. ReLU will be used as the
activation for the first fully-connected layer and softmax
will be used for the last fully-connected layer and will
perform classification task.

Fig. 14-A shows convolution block. As is shown, convolu-
tion block contains one multiplier, one adder/subtractor, one
cache for saving filters, input feature maps and output feature
maps, a few registers, multiplexers and a state machine block.
When the convolution operations are done for all the input
feature maps, the output feature maps will be saved into the
main feature map memory. The input data coming from the
sensors are 16-bit two’s complement. Also, the filters are
considered to be 16-bit two’s complement which will be dis-
cussed in sub-section VI-B. After performing the convolution,
the data will pass to ReLU activation function. The output
of ReLU is truncated to 16 bits and saved in feature map
memory. An offline training is performed to obtain model
weights using keras. The model weights are converted to fixed-
point format and are represented by 14 bits. The floating-
point arithmetic is complex, requires more area and consumes
more power compared to fixed point arithmetic. Fig. 14-B
shows the max-pool block which contains some registers and
a comparator. The input to the max-pool is feature maps data,
which is formed by convolution block. After max-pooling
operations finish, the results will be saved into the main feature
map memory. 14-C shows the fully-connected block. As is
shown, the architecture consists of a serial dot product engine,
a dynamic sorting logic for the softmax activation function,
ReLU logic and a state machine for controlling all sub-blocks.
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Depends on the layer either ReLU or softmax can be used.
After finishing computations for the fully-connected layers the
results will be saved into the main feature memory.

A. Exploiting Efficient Parallelism

Scalability is one of the key features of the proposed
SensorNet on hardware. Therefore, we design SensorNet hard-
ware architecture to be configured to perform convolution
operation in parallel if it is needed specially for fast appli-
cations. In deep convolutional neural networks, convolutional

PE]
PE]

(b) (c)

Fig. 15. Comparison of different parallel tiling techniques for convolutional
layers. Output channel tiling has the least communication contention and inter-
core dependency. (a) Input channel tiling. (b) Output channel tiling. (c) Image
patch tiling.

layers dominate the computation complexity and consequently
affects the latency and throughput. Therefore, for the appli-
cations with many input modalities or the applications that
need to issue a command very fast, we must exploit efficient
forms of parallelism that exist within convolutional layers.
In [26] we explored three main forms of parallelism methods,
that can be employed in convolutional layers. The basic
process for the three tiling methods are shown in Fig. 15.
The first method, we will refer to as input channel tiling, is to
convolve multiple input feature channels concurrently for a
given feature map. The second method, output channel tiling,
performs convolution across multiple output channels for a
given input channel, simultaneously. The third method, which
we refer to as image patch tiling, is to break a given input
feature channel into patches and perform convolution on the
patches concurrently. Zhang et al. [27] analyzed these three
tiling methods using the rooftop model to determine what
method provides the best throughput in FPGA fabric. Their
findings confirm that output channel tiling provides the best
form of parallelism when taking into account I/O memory
bandwidth and computational load using the computation to
communication (CTC) ratio. Therefore, we primarily exploit
output channel tiling due to minimal dependency among the
parallel cores and minimal communication contention.

B. Optimal Fixed-Point Format Width

Another important consideration in SensorNet hardware
architecture design is to find optimum level of precision for the
weights. This will affect the memory requirements and also the
power consumption. We model a custom fixed-point SensorNet
design to find optimum weights length. To quantify per-
formance gap between floating point Keras implementations
and proposed fixed-point architectures, we calculate average
accuracy from the estimated signal obtained from Python soft-
ware solution and hardware implementations. Fig. 16 shows
accuracy of SensorNet computation signal depends on the
number of fixed-point bits used to represent the weights.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS

TABLE 1I
IMPLEMENTATION RESULTS OF THE PROPOSED SENSORNET ON XILINX FPGA (ARTIX-7). THE RESULTS OBTAINED AT CLOCK FREQUENCY OF 100 MHz

Merits/Case Studies Physical Act1v1ty Monitoring Tongue Drl\./e System Stress De‘tectlon
Serial Semi Fully Serial Semi Fully Serial Semi Fully
Parallel Parallel Parallel Parallel Parallel Parallel
# of used PE 1 4 8 1 4 8 1 4 8
BRAM 14 23 35 12 18 26 11.5 16 22
# DSP slices 3 6 10 3 6 10 3 6 10
# of Slices 982 1680 2506 961 1592 2430 939 1594 2388
Latency (ms) 14.8 3.8 2 11.2 2.9 1.5 7.3 1.9 1
Throughput (label/s) 67 259 491 89 340 641 136 513 952
Dynamic Power (mW) 46 72 103 42 64 89 41 61 83
Static Power (mW) 71 71 72 71 71 71 71 71 71
Total Power (mW) 116 143 175 113 135 160 112 132 154
Total Energy (m]) 1.7 0.6 0.35 1.3 0.4 0.24 0.8 0.3 0.15
o T T T T TABLE III
- o Gl i SENSORNET ASIC IMPLEMENTATION RESULTS AT OPERATING
T xs’ 1a-0 1008 1 FREQUENCY OF 100 MHz. CMOS FABRICATION PROCESS
= ©F K 3-bit: 100% 1 1S 65 nm WITH | V POWER SUPPLY
§ 70k ..' 4
§ sof :: 1 Metrics/ Physical Activity | Tongue Drive Stress
‘af) S0 4 Case Studies Monitoring System Detection
§ “° ’:* 1 Area utilization 95 94 95
O ot R 1 Clock freq. (MHz) 100
% 2 "x | Max. clock freq. (MHz) 857 867 888
ol x‘;; 9-bit: 9.5% | Core area (mm?) 0.4 0.3 0.2
. | | | | | | | | Latency (ms) 14.8 11 7
e o " 2 1 “ » 1 ” Throughput (label/s) 67 89 136
Bit Precision Leakage power (mW) 7.4 6.3 2.4
Dynamic power (mW) 11.1 9.6 6.8
Fig. 16. Hardware accuracy of SensorNet with respect to number of fixed- Total power (mW) 18.5 15.9 9.2
point bits used to represent the filters (model weights). Energy (mJ]) 027 017 0.06

Based on the results, 13-bit precision gives hardware accuracy
of 100% with an error of 2*-13. Therefor, all SensorNet filters
are converted to 1.13-bit (14-bit) fixed-point format and saved
in the main filter memory.

VII. HARDWARE IMPLEMENTATION RESULTS

In this section, SensorNet implementations results on both
FPGA and ASIC, for Physical Activity Monitoring, sdTDS and
Stress Detection case studies are presented. Also, we provide
SensorNet implementations results on NVIDIA TX2 SoC and
make a comparison between the results of FPGA, ASIC and
TX2 platforms.

A. FPGA Implementation Results and Analysis

The complete proposed SensorNet which includes convolu-
tion, max-pooling, fully-connected and activation functions are
implemented on an Xilinx Artix-7 FPGA at clock frequency
of 100 MHz. Verilog HDL is used to describe SensorNet
hardware architecture.

Fig. 17 shows power consumption breakdown of post-place
and route implementation on the FPGA, which is obtained by
using Vivado Power tool. As it can be seen from the figure,
average device static and Block RAMs power consumption
of FPGA is around 62% and 18% of entire power which is
very large compared to the power consumption of SensorNet
logic. However, the overall power consumption for all the case
studies is small and is suitable for battery-powered wearable
devices.

Table II provides SensorNet performance results for
different architectures, including serial, semi-serial and fully-
parallel designs. Also, Fig. 18 demonstrates the impact of
increasing the number of PEs on power consumption, classi-
fication latency and energy. As is shown, for a given network
increasing the number of PE, increases power consumption
slightly but improves both latency and energy consumption.

B. ASIC Implementation Results and Analysis

To reduce the overall power consumption, an application-
specified integrated circuit (ASIC) for SensorNet is imple-
mented at the postlayout level in 65-nm CMOS technology
with 1-V power supply. Due to the ability of ASIC designs
to run at high clock frequencies, only SensorNet with a serial
architecture is implemented, for all the case studies including
Physical Activity Monitoring, sdTDS and Stress Detection.
A standard-cell register-transfer level (RTL) to Graphic Data
System (GDSII) flow using synthesis and automatic place and
route is used. The proposed SensorNet including convolu-
tion, max-pooling, fully-connected with activation functions
is implemented using Verilog to describe the architecture,
synthesized with Synopsys Design Compiler, and place and
routed using Cadence SOC Encounter. The ASIC layouts for
all the case studies are shown in Fig. 19. The implementa-
tion results are provided in table III. SensorNet is able to
operate at maximum clock frequency of 888 MHz. However,
the clock frequency has been reduced to 100 MHz to reduce
the power consumption and have a fair comparison with FPGA
performance results. The ASIC implementation reduces the
power consumption by a factor of 8 on average.
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TABLE IV

REAL-TIME SENSORNET IMPLEMENTATION RESULTS ON
NVIDIA JETSON TX2 SoC (CPU+GPU)

Merits/Case Studies Activity Monitoring sdTDS Stress Detection
CPU GPU CPU GPU CPU GPU
Latency (ms) 3.1 0.9 2.1 0.8 1.1 0.75
Throughput (label/s) 316 1185 476 1277 | 884 1345
Total Power (mW) 1639 1763 1617 1740 1608 1722
Total Energy (m]) 5.2 1.5 3.4 1.4 1.8 1.3

C. Off-the-Shelf Platforms Implementation
Results and Analysis

The proposed SensorNet is built and implemented on the
NVIDIA Jetson TX2 platform using the TensorFlow frame-
work. Table IV shows the real-time implementation results in
terms of latency, throughput, power and energy consumption
for all three case studies. The TX2-CPU refers to using a single
CPU core running at the lowest clock frequency of 345 MHz,
without using the GPU. As can be seen from the table,
on the base setting the energy consumption of the proposed
processor is 3.46 mlJ, on average (average over the three case
studies). Also, it takes 2.1 ms on average to finish all the
necessary computations. For the same input data, when the
GPU is enabled and processing is performed on the GPU with
a clock frequency of 140 MHz and one CPU core is on,

TABLE V

SensorNet IMPLEMENTATION RESULTS ON CPU, GPU, FPGA AND
ASIC IN TERMS OF LATENCY, THROUGHPUT, POWER AND
ENERGY CONSUMPTION, FOR THE PHYSICAL
ACTIVITY MONITORING CASE STUDY

Metrics/Platform TX2 TX2 FPGA FPGA ASIC
CPU GPU Serial Parallel 65-nm
Clock frequency (MHz) 350 140 100 100 100
Latency (ms) 3.1 0.9 14.8 2 14.8
Throughput (label/s) 316 1185 67 491 67
Power (mW) 1639 1763 116 175 18.5
Energy (m]) 5.2 1.5 1.7 0.35 0.27

running at 345 MHz, on average the energy consumption is
1.4 mJ and the execution time is 0.8 ms which shows an
improvement of 2.5x and 2.6x compared to the TX2-CPU
setting, respectively.

D. Comparison of SensorNet Performance on
Different Embedded Platforms

Table V shows a comparison between our implementation
on different embedded platforms including FPGA, ASIC and
NVIDIA TX2 SoC. The TX2 with GPU is configured when the
processing is performed on the GPU with a clock frequency
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TABLE VI

SensorNet DETECTION ACCURACY RESULTS COMPARISON WITH OTHER WORK FOR PHYSICAL
ACTIVITY MONITORING, sdTDS AND STRESS DETECTION CASE STUDIES

. . Physical Activity Monitorin Tongue Drive System Stress Detection
Merits/Case Studies 6] S = T This work T This work 23] This work
Technique Multi-channel Deep LSTM PCA+NN SensorNet EMI+LR SensorNet Gaussian Mixture SensorNet
DCNN Model
Accuracy (%) 93 85 89 98 96 96 85 94

of 140 MHz and a single CPU core is on, running at 345 MHz.
For the FPGA-based SensorNet we include both fully-serial
and fully-parallel architecture when implemented on Artix-7
platform. As it can be seen from the table, ASIC implementa-
tion achieves lowest power and energy consumption compared
to other platforms. Also, power and energy consumption of our
fully-parallel FPGA implementations is 9x and 15x lower
compared to CPU implementation. Also, compared to GPU
implementation, it achieves 10x and 4x lower power and
energy consumption.

E. Comparison With Existing Work

Recently several FPGA/ASIC accelerators have been pro-
posed for DCNN, mainly for computer vision applications.
Andri et al. [29] proposed an architecture for Ultra-Low power
Binary-Weight CNN acceleration. They proposed to use latch-
based SCMs for on-chip data storage to be able to scale
down the operating voltage even further. They implemented
the accelerator using UMC 65-nm technology which consumes
153 mW. Also, Wang et al. [30] proposed an energy-efficient
architecture for Binarized DCNN. Authors employed different
architectural level and circuit level optimization techniques
to reduce off-chip I/O access and power consumption. They
implemented their architecture using ASIC 130-nm CMOS
technology which consumes 842 mW power for VGG-16 net-
work. Chen et al. [31] proposed a processing dataflow, called
row stationary to minimize data movement from on-chip
and off-chip memories. They implemented the optimizaed
accelerator using ASIC 65-nm CMOS technology which con-
sumes 236 mW for VGG-16 network. Alemdar et al. [28]
proposed to train Ternary Neural Networks using a teacher-
student approach based on a novel, layer-wise greedy method-
ology. They implemented their proposed work on FPGA and
ASIC which consumes 6.25 W and 0.377 W, respectively.
Zhao et al. [32] proposed an FPGA-based accelerator for
Binarized DCNN which uses variable-width line buffer. They
implemented the accelerator on Zynq SoC device which con-
sumes 4.7 W power. Motamedi et al. [33] proposed a DCNN
accelerator and explore available sources of parallelism to min-
imize the execution. They evaluated their proposed solution
using AlexNet on Vertix-7 FPGA. Nakahara and Sasao [34]
proposed a new MAC architecture for DCNN. The proposed
MAC is decomposed into 4-bit parallel units. They evaluated
their proposed solution using ImageNet on Virtex7 FPGA.
Li et al [35] proposed a structural design optimization
for Deep Convolutional Neural Networks using Stochastic
Computing. They evaluated their designs using LeNet-5 and
MNIST datasets and they implemented their proposed tech-
nique on CPU, GPU and Binary ASIC. Basterretxea et al. [17]

proposed a solution for multimodal activity recognition on
FPGA with 268 mW power consumption.

Compared to the previous work which mainly target
FPGA/ASIC hardware acceleration for the computer vision
applications, this paper proposes a customized DCNN
architecture for multimodal time-series data classification.
We employed algorithmic optimization techniques to reduce
the memory requirements and number of operations while
achieving high detection accuracy. Also, we proposed a hard-
ware architecture which is scalable and allows for different
parallel and fixed-point representations. We employed different
hardware optimization techniques to reduce memory access,
power consumption and resource utilization. Therefore, cus-
tomizing and optimizing DCNN for multimodal time-series
applications, along with an efficient hardware architecture
design result in low power and energy consumption in this
work.

Table VI shows SensorNet detection accuracy results com-
parison with other work for Physical Activity Monitoring,
sdTDS and Stress Detection case studies. Based on the results,
SensorNet achieves higher or comparable detection accuracy
for all three different case studies. For Activity Recognition
case study, SensorNet achieves 5%, 13% and 9% higher
detection accuracy compared to [8], [14], and [17]. Also, for
Tongue Drive system the detection accuracy of SensorNet is
similar to [22]. Furthermore, SensorNet achieves 9% higher
accuracy compared to [23], for Stress detection case study.

Table VII shows a comparison of the proposed SensorNet
hardware implementation results with existing deep learning
solutions on embedded devices. When SensorNet is deployed
at Xilinx FPGA device with a fully-parallel design and running
at 100 MHz, it consumes 154 mW and 175 mW power
for Stress Detection and Activity Recognition case studies,
respectively. For the same Activity Recognition case study,
FPGA-based SensorNet consumes 1.7 x, 73 x and 123 x lower
power, latency and energy compared to [17]. SensorNet with a
fully-parallel architecture for Activity Monitoring case study,
uses 10 DSP Slices, 35 BRAM, 2500 Slices. Whereas [17],
uses 19 DSP Slices, 65 BRAM, 2175 Slices. Therefore,
SensorNet utilize less DSP slices and BRAM compared
to [17], but slightly more number of slice.

When SensorNet is implemented using ASIC 65-nm and
running at approximately 900 MHz, it consumes 60 mW and
102 mW power for Stress Detection and Activity Recognition
case studies, respectively. Since we could not find any ASIC
work for a similar dataset, we compare SensorNet results for
Stress Detection case study with [28] results for CIFAR-10,
which is a small computer vision dataset. Compared to [28],
SensorNet consumes 6x and 2.2x lower power and energy
but 2.6x higher latency. This paper focuses on multimodal
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TABLE VII
COMPARISON OF SensorNet PERFORMANCE WITH RELATED WORKS WHEN EVALUATED ON REAL-TIME EMBEDDED SETTINGS
Metrics [13] [18] [17] 28] This work This work
Application Human Activity Recognition CIFAR-10 Stress Detection Human Activity Recognition
No. of channels 6 6 40 - 7 40
Technique DeepSense Multimodal RBM PCA+NN Ternary NN SensorNet SensorNet
Platform Intel Edison Snapdragon FPGA ASIC 28-nm FPGA | ASIC 65-nm FPGA ASIC 65-nm
Latency (ms) 105 50 146 0.3 1 0.8 2 1.6
Power (W) 6 1.9 0.294 0.377 0.154 0.06 0.175 0.102
Energy (m]) 700 96 43 0.111 0.15 0.05 0.35 0.164

time-series case studies which usually do not need to run very
fast; therefore, SensorNet on ASIC is not designed to achieve
a very low latency compared to previous DCNN on ASIC for
computer vision applications.

Compared to [13] and [18], FPGA-based SensorNet
achieves 38 x, 12 x lower power, 105 x, 50x lower latency and
4666, 640x lower energy, for the applications with similar
number of data channels.

VIII. CONCLUSION

This paper presents Sensornet, a low power embedded deep
convolutional neural network for multimodal time series signal
classification. First, the time series data generated by different
sensors are converted to images (2-D signals) and then a
single DCNN is employed to learn features over multiple
modalities and perform the classification task. The proposed
SensorNet is scalable as it can process different types of time
series data with variety of input channels and sampling rates.
Also, it does not need to employ separate signal processing
techniques for processing the data generated by each sensor
modality. Furthermore, there is no need of expert knowl-
edge for extracting features for each sensor data. Moreover,
SensorNet has a very efficient architecture which makes it
suitable to be deployed at IoT and wearable devices. The
proposed solution was tested using three real-world case stud-
ies including Physical Activity Monitoring, dual-mode Tongue
Drive system and Stress detection and based on the results,
it achieved an average classification accuracy of 98%, 96.2%,
94% for each application, respectively. A custom low power
hardware architecture is also designed for the efficient deploy-
ment of SensorNet at embedded real-time systems and when is
implemented on Xilinx FPGA (Artix-7), on average consumes
246 pJ energy. To further reduce the power consumption,
SensorNet is implemented using ASIC at the post layout level
in 65-nm CMOS technology which consumes approximately
8x lower power compared to the FPGA implementation.
Additionally, SensorNet is implemented on NVIDIA Jetson
TX2 SoC (CPU+GPU) and compared to TX2 single-core CPU
and GPU implementations, FPGA-based SensorNet obtains
15x and 4x improvement in energy consumption.
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