
A

Low Overhead CS-based Heterogeneous Framework for Big Data
Acceleration

Amey Kulkarni, University of Maryland Baltimore County
Colin Shea, University of Maryland Baltimore County
Tahmid Abtahi, University of Maryland Baltimore County
Houman Homayoun, George Mason University
Tinoosh Mohsenin, University of Maryland Baltimore County

Big data processing on hardware gained immense interest among hardware research community to take
advantage of fast processing and re-configurability. Though the computation latency can be reduced using
hardware, big data processing cost is dominated by data transfers. In this paper, we propose a low overhead
framework based on compressive sensing (CS) to reduce data transfers up to 67% without affecting signal
quality. CS has two important kernels “sensing” and “reconstruction”, in this paper we focus on CS recon-
struction is using orthogonal matching pursuit (OMP) algorithm. We implement OMP CS reconstruction
algorithm on domain specific PENC many-core platform, and low power Jetson TK1 platform consisting of
ARM CPU, and K1 GPU. Detailed performance analysis of OMP algorithm on each platform suggests that
PENC many-core platform has 15× and 18× less energy consumption and 16× and 8× faster reconstruction
time as compared to low power ARM CPU, and K1 GPU, respectively. Furthermore we implement proposed
CS-based framework on heterogeneous architecture, in which the PENC many-core architecture is used as
an “accelerator” and processing is performed on ARM CPU platform. For demonstration, we integrate the
proposed CS-based framework with hadoop MapReduce platform for face detection application. The results
show that the proposed CS-based framework with PENC many-core as an accelerator achieves 26.15% data
storage/transfer reduction, with an execution time and energy consumption overhead of 3.7% and 0.002%,
respectively for 5000 image transfers. Compared to the CS-based framework implementation on low power
Jetson TK1 ARM CPU+GPU platform, the PENC many-core implementation is 2.3× faster for the image
reconstruction part, while achieving 29% higher performance and 34% better energy efficiency for complete
face detection application on hadoop MapReduce platform.

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Compressive Sensing; Heterogeneous Architecture; Many-Core

1. INTRODUCTION
IoT and cloud computing applications such as health monitoring, video surveillance,
and wireless sensor networks generate humongous amount of data every hour with
unprecedented rate. To evaluate big data sets, hadoop platform using distributed pro-
cessing on clusters of commodity computers is extensively used. Processing of big data
sets demands large number of computational resources to enhance application run
time, however these computing resources should have low latency and power. There-
fore to improve energy efficiency, the trend has started to adopt hardware accelera-
tors such as FPGAs, GPUs, and domain specific many-cores. Furthermore it has been
also demonstrated that the domain specific many-core architectures are exceptional in
terms of energy efficiency and throughput per area [Gautschi et al. 2016] [Tavana et al.
2015] [Conti and Benini 2015] [Stillmaker et al. 2012]. However, big data processing
on many-core platforms faces various challenges such as storage and data transfer re-
quirements. For example AsAP many-core platform [Stillmaker et al. 2012] [Liu and
Baas 2013] has 16KB memory, whereas Power Efficient Nano Clusters (PENC) many-
core platform [Kulkarni et al. 2016a], [Kulkarni et al. 2016c], [Page et al. 2016] has
382KB. Thus for efficient big data processing on hardware accelerators, reducing stor-
age space and data transfers is of utmost importance. In this paper, we propose a low
overhead and scalable CS-based framework to curtail storage requirements and data
transfer.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

Fig. 1. Proposed low overhead CS-based heterogeneous framework for big data acceleration, compressive
sampling is performed using our previous work [Kulkarni et al. 2016a], CS reconstruction is achieved on
accelerator platform using OMP algorithm, and application processing is performed on host platform on
reconstructed data.

In past few years various compression algorithms have been proposed to reduce data
transfers, however these solutions encounter various challenges such as : 1. Ineffi-
cient for continuously changing big data sets, 2. Hardware overhead of decompression
at processing platform, and 3. High decompression error rate. Compressive Sensing
(CS) has demonstrated exceptional decompression (reconstruction) error rate [Tropp
and Gilbert 2007], [Candès and Wakin 2010], [Needell and Vershynin 2010], how-
ever the reconstruction of CS is computationally intensive [Septimus and Steinberg
2010], [Kulkarni et al. 2014], [Kulkarni and Mohsenin 2015]. CS is a novel technique
in which compression of the data set is performed by obtaining fewer linear combi-
nations of data, thus reducing storage and data transfers. CS consists of two kernels:
sensing and reconstruction; “sensing” is performed before data communications to ac-
quire compressed measurements, whereas goal of the “reconstruction” kernel is to re-
cover sparse data using very small number of linearly transformed measurements.
Compressive sampling and OMP reconstruction architecture adopted in this paper are
reconfigurable, scalable and can be readily applied to different signal processing or ma-
chine learning applications. Compressive sensing enables up to 67% of data reduction
with 3.81dB SRER.

The goal of this paper is to reduce data transfers for big data acceleration to per-
form efficient big data processing using hardware platforms. Heterogeneous architec-
tures have emerged as a promising solutions in energy efficient and high performance
computing by allowing applications to run on a computing core that matches the re-
source needs more closely than a single one-size-fits-all general purpose core. Hetero-
geneous chip architecture integrates cores with various micro-architectures or instruc-
tion set architectures with on-chip accelerators to provide more opportunities for effi-
cient workload mapping so that the application can find a better match among various
components to achieve execution deadline and energy efficiency. Examples of hetero-
geneous architectures in embedded domains are Xilinx ZYNQ (CPU+FPGA), nVIDIA
Tegra (CPU+GPU), Qualcomm Snapdragon (CPU+DSP+GPU) and Samsung Exynos
(Big+Little CPU+GPU). Furthermore, heterogeneous big data frameworks consisting
of FPGAs as accelerators such as Corse-Grained Pipelined Accelerators (CGPA) [L.
et al. 2014], and Software Defined Accelerators (SODA) [Wang et al. 2015] show
speedup of 4� to 46� respectively. SODA is component based programming model
and consists of dataflow execution phases whereas CGPA can identify and split paral-
lelizable sections for individual loops with complex control flow and irregular memory
access. The objective of this paper is to accelerate the computationally intensive OMP
CS reconstruction algorithm with low hardware overhead in terms of execution time,
energy consumption, and throughput per area, while host processor performs applica-
tion processing on reconstructed data.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

In this paper, we propose a low overhead CS-based heterogeneous framework that
can reduce data up to 67% without affecting signal quality. In the proposed framework
as shown in Figure 1, we adopt deterministic sampling to sketch (sample) original
signal [Kulkarni et al. 2016a], [Jafari and Mohsenin 2015] and orthogonal matching
pursuit (OMP) algorithm for reconstruction of signal. We propose a �exible and fully
parallel architecture for OMP which can ef�ciently reconstruct a wide range of sig-
nal sizes. We evaluate the proposed architecture in terms of power consumption and
execution time on different platforms including, low power nvidia TK1 platform con-
sisting of quad-core ARM CPU and K1 GPU combination, and PENC many-core plat-
form to choose the best platform as an accelerator for CS reconstruction. Finally, for
the demonstration of a real application, the proposed framework is integrated with
hadoop MapReduce platform for face detection application. The performance of face
detection application is shown in terms of reconstruction quality, hardware overhead
cost for end-to-end framework, and overall reduction in data transfers.

The main contributions of this paper include:

— Introducing a low overhead and scalable CS-based heterogeneous framework for big
data acceleration. The heterogeneous framework consists of an accelerator for low
overhead CS recovery using a fully �exible and parallel reconstruction using OMP
architecture and a host processor for post processing.

— OMP algorithm implementation and characterisation on various platforms including
low power ARM CPU, K1 GPU combination and PENC many-core platform with
respect to power, execution time and core usage parameters for wide ranges of image
sizes.

— Integration of the proposed CS-based heterogeneous framework with hadoop MapRe-
duce platform for face detection application.

— Comparison of hadoop MapReduce with CS-based framework implementation on
PENC+ARM CPU platform and ARM CPU only implementation with respect to exe-
cution time and energy consumption overhead.

— Face detection quality, data transfer reduction and hardware overhead analysis of
the proposed CS-based framework implementation of face detection as a case study,
where PENC many-core acts as an accelerator and ARM CPU as a processing plat-
form.

The rest of the paper is organized as follows: Section 2 presents a survey of related
work on accelerating big data processing using compressive sensing. OMP algorithm
used for recovery of compressive sampled data is discussed in section 3. In this paper
we implement fully �exible and parallel OMP architecture on three different plat-
forms, the processing platform architectures and implementations are discussed in
section 4. Section 5 describes results and comparison analysis of OMP algorithm im-
plementation on different platforms. Finally, section 6 demonstrates ef�ciency of the
proposed CS-based framework with hadoop platform integration for face detection ap-
plication.

2. RELATED WORK

Hardware acceleration for Big Data processing using ASIC, FPGA, GPU and domain
speci�c many-cores interests many researchers due to its low energy consumption and
fast processing capabilities. Acceleration architectures such as SparcNet [Page et al.
2017] and DianNao [Chen et al. 2016] shows speedup of about 117 � and reduce up
to 21� energy consumption for machine learning algorithms. SparcNet is a heteroge-
neous architecture consisting of ARM CPU and FPGA platforms, whereas DianNao
architecture is implemented on 65nm CMOS technology. However, number of data
transfers can be a potential bottleneck for large weight matrix and input data trans-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

fers [Neshatpour et al. 2015], [Malik et al. 2015]. In this paper, we reduce data trans-
fers to accelerate Big Data processing on hardware platforms using a low overhead
CS-based framework.

Most researchers used hardware platforms such as FPGA or ARM micro-
architectures to accelerate big data processing. A MapReduce framework on FPGA
has been implemented by [Shan et al. 2010], demonstrating 31.8 � speedup on FPGA as
compared to CPU for RankBoost machine learning algorithm using MapReduce frame-
work. Recent work on MapReduce framework using heterogeneous architecture has
shown signi�cant ef�ciency advantage over single processing architecture when run-
ning various big data benchmarks. In [Neshatpour et al. 2015] computational power
of big data applications is reduced by adopting a low power xilinx zynq platform. The
paper implements computationally complex kernels on FPGA to achieve speed up and
energy reduction. The MapReduce application is implemented on two different micro-
architectures; server and Atom platform. Overall results indicate the bene�t of Atom
(small cores) in terms of energy ef�cient hardware acceleration. [Malik et al. 2015]
demonstrates that size of data and performance constraints affects choice of big vs lit-
tle core-based servers for ef�cient big data processing. Furthermore, the paper demon-
strates that required number of data transfers can be a potential bottleneck for large
data transfers.

In past compressive sensing has been effectively practiced in data collection scheme
for wireless sensor networks. [Liu et al. 2015] models the data collection process as a
nonuniform sparse random projection (NSRP) to reduce error bound. In this paper we
perform deterministic random projections to reduce hardware complexity with min-
imum error rate. The trend to reduce data using compressive sensing for big data
applications began with [Zhang et al. 2014] and it is still in preliminary phases of
research. [Zhang et al. 2014] implements compressive sensing based storage for big
data analytics; authors convey that for many big data analytics workloads approx-
imate results suf�ce. In [Yan et al. 2015] CS-based framework is incorporated into
Hadoop and evaluated it on real web-scale production data. It shows reduction in data
shuf�ing I/O up to 99%, and end-to-end job duration by up to 40%. In both [Zhang
et al. 2014], [Yan et al. 2015] implementations were performed on software platforms
thus best performance can be achieved if implemented on hardware platforms such as
FPGAs or domain speci�c many-cores.

In our previous papers, we implemented parallel and recon�gurable OMP algorithm
on FPGA virtex-7 platform to reconstruct images ranging from 128� 128 to 512� 512
with �xed sparsity value and 33% measurements in [Kulkarni et al. 2014]. We also
discussed the effect of sparsity and number of measurements on reconstruction qual-
ity and hardware complexity of the design. Furthermore, we proposed platform inde-
pendent architecture for OMP algorithm in [Kulkarni and Mohsenin 2015], [Kulkarni
et al. 2014]. We also demonstrated the ef�ciency of CS sampling based on determin-
istic random matrix generator to decrease hardware overhead for machine learning
application [Kulkarni et al. 2016a] [Jafari and Mohsenin 2015]. In [Kulkarni et al.
2016], [Kulkarni and Mohsenin 2017] we proposed low overhead reconstruction algo-
rithm called GD-OMP based on OMP algorithm for big data acceleration.

3. BACKGROUND

3.1. Compressive Sensing Problem

Let us assume x to be a k-sparse signal of length N . Let � be the measurement ma-
trix projected onto the original signal, x. Measurement matrix (�) must be incoherent
with the basis of the sparse signal, x. If x is not sparse in its original bases, it can be
transformed to another domain in which the signal is sparse. Then the measurement

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Fig. 2. Basic block diagram of OMP CS reconstruction algorithm.

Algorithm 1 OMP Reconstruction Algorithm
1:Initialization

— R0 =y, � 0=; , Q0 =; and t = 0

2:Identi�cation

— Find Index � t = max j =1 :::n subject to j < � j Rt � 1 > j

3:Augmentation

— Update � t =� t � 1
S

� t
— Update Qt =[Qt � 1 Q� t]

4:Residual Update

— Solve the Least Squares Problem
x t = minx jj y - Qy x jj 2

— Calculate new approximation: � t = Qt x t
— Calculate new residual: Rt = y-� t

5: Increment t, and repeat from step 2 if t < k After all the iterations, we can �nd
correct sparse signals.

matrix has to be uncorrelated with the signal in the transformed domain [Cand �es and
Wakin 2010]. The size of � is M � N , where M<<N and represents the number of
measurements. y is a M length vector containing the measurements obtained by the
projection of � onto x. Therefore, signal need to be converted to a transformed basis,
	 , to induce sparsity and y is obtained as:

y = � 	 x = � x (1)

In this paper, deterministic compressive sampling (DRM) technique is used to trans-
form streaming data to lower dimensional data structure. In DRM instead of obtaining
a few samples of the signal, few linear combinations are sampled. Using fewer mea-
surements, a signal can be reconstructed almost perfectly under certain conditions [Ja-
fari and Mohsenin 2015]. In our previous work, recon�gurable data sketching archi-
tecture using DRM technique is implemented [Kulkarni et al. 2016a]. We evaluated
compressive sampling with respect to different data sizes, and impact on application
error rate with respect to change in sparsity value and data reduction.

3.2. Orthogonal Matching Pursuit Algorithm

Among a variety of CS reconstruction algorithms, iterative greedy algorithms have
lower complexity and low signal to reconstruction error rate [Tropp and Gilbert
2007] [Needell and Vershynin 2010]. OMP is an iterative greedy algorithm, which is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

widely used due to its capability to solve large dimensional problems and competitive
performance. In our previous work, we showed that, OMP algorithm is scalable to re-
construct large amount of data [Kulkarni et al. 2014] and can withstand continuously
changing streaming data [Korde et al. 2013].

OMP is a greedy algorithm, which �nds the sparsest solution iteratively by comput-
ing support of x and subtracting it from measurement vector y at every iteration. As
shown in Figure 2 and Algorithm 1, OMP has three different phases, Identi�cation,
Augmentation and Residual Update. In Identi�cation phase, index (i) of highest mag-
nitude of � � R is chosen as potential vector to �nd closest approximation to x. At each
iteration, index (i) is added to the list of estimated support vectors from the Augmenta-
tion phase. The Residual update phase generates the next residual for next iteration.
In this phase, �rst the formed Q augmented matrix is used in a Least Square regres-
sion model to �nd linear relationship between augmented matrix (Q) and measured
vector (y). Next, the amount of contribution that column y provides is subtracted to
obtain a residue. The OMP algorithm repeats sparsity (k) times to determine correct
set of columns [Tropp and Gilbert 2007].

The variables used in the Algorithm 1 are de�ned below:

— N� N = Images size (e.g 128� 128:::768� 768)
— M = Measurements (e.g 42:::252)
— k = Sparsity (e.g 32)
— R = Residual matrix (size : M � 1)
— � = Measurement matrix (size : M � N)
— � = Maximum index after dot product
— t = No. of iterations (k)

The computational complexity for each step is explained below:

(1) Identi�cation phase < �R > requires matrix multiplication of � , which is M � N
matrix with R, which is a 1 � M vector. Thus computational complexity of O(MN).
Maximum of < �R > , which gives a N � 1 vector. Hence, it has a computational
complexity of O(N).

(2) In residual update phase consist of the least squares problem. At each iteration, i , �
has i columns of size M . Hence, the new matrix, Q, is of size i � M . Doing a (QT Q)
gives a i � i resulting matrix. Thus, a cost of O(iM). The cost of inverting this i � i
matrix by LU Decomposition is O(i 3). The cost of QT y is O(i 2).

(3) To calculate the new approximation: � t = Qt x t
Q is of size i � M and x is of size 1 � i . Thus computational complexity of O(iM).

(4) Compute new residual: Rt = y � � t , y and � t are M � 1 matrices. The subtraction at
each iteration will take M computations, hence, O(M).
Therefore, the total cost per iteration will be O(MN). If the signal is k-sparse, this
algorithm will be iterated k times, giving a total computation complexity of O(kMN).

4. PROPOSED FRAMEWORK

4.1. Processing Platform Architecture

In this paper we propose a CS-based heterogeneous framework for reducing data
transfers to accelerate big data processing on hardware platforms. The heterogeneous
framework consists of an accelerator for ef�cient CS recovery using a fully �exible and
parallel reconstruction using OMP architecture and a host processor to perform post
processing. An accelerator is a programmable platform adopted to perform compute-
intensive CS-reconstruction while achieving low power and high-speed computations.
Recent research has shown that heterogeneous architecture platforms provide signi�-
cant advantages in enabling energy-ef�cient or area-ef�cient computing. For example,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

Fig. 3. (A) Power Ef�cient Nano Clusters (PENC), many-core architecture (B) Bus-based cluster architec-
ture (C) Post-layout view of bus-based cluster implemented in 65nm, 1V TSMC CMOS technology (D) Block
diagram of core architecture (E) Post-layout implementation results of bus-based cluster (consisting 3 cores
+ bus + cluster memory).

nvidia Jetson TK1 combines the bene�ts of the parallelism of GPU and the scalability
of a multi-core CPU architecture. Although integration with GPU has provided oppor-
tunities to enhance the performance, it comes with signi�cant power cost. To address
the need for programmability, low power consumption, area ef�ciency and parallel
computing platform, we adopt PENC many-core platform. In order to determine best
platform for CS reconstruction, OMP architecture is implemented on three different
platforms. nvidia Jetson TK1 platform consisting low power combination of nvidia ke-
pler GPU and qual-core ARM CPU which provide both programmable and parallel
solutions and a domain speci�c PENC many-core is also adopted which provides pro-
grammability, parallelism and energy ef�ciency. Each platform has substantially dif-
ferent architectural and memory sub-system, middle-ware support, and programming
style. Thus to determine best accelerator, we also address performance with respect to
overhead in design �ow and I/O budgets.

4.1.1. ARM CPU/K1 GPU. Today's off-the-shelf processors provide a wide range of ca-
pabilities at different power targets. We use the popular nvidia Jetson TK1 platform
which has low power commercial-of-the-shelf (COTS) in market, to evaluate power pri-
orities related to implementing OMP architecture. The system-on-chip (SoC) combines
the kepler graphics processing unit, GPU, and a 4-plus-1 ARM processor arrangement
on a single chip. The 4-plus-1 processor con�guration, also known as variable symmet-
ric multiprocessing (vSMP,) consists of �ve cortex A15 ARM processors, four high per-
formance processors and one low power processor. Each ARM CPU has a 32KB L1 data
and instruction cache supporting 128-bit NEON TM general-purpose single instruction,
and SIMD instructions. All processors in the 4-plus-1 con�guration have shared access
to a 2MB L2 cache. The K20a GPU is available to either processor power con�guration
and consists of a single streaming multiprocessor (SMX). The SMX has a CUDA TM

compute capability of 3.2, which provides a majority of the architectural bene�ts of
the K20c only scaled down to a single SMX group. The Jetson TK1 has 2GB of DDR3
memory that is shared between the ARM CPU and K1 GPU and is rated to run up
to 933MHz. In this paper we use different combinations of the four high performance
cortex A15 ARM processors and the GPU for comparison.

4.1.2. PENC Many-Core Architecture. Power Ef�cient Nano Clusters (PENC), many-core
architecture is composed of 64 processing clusters (192 Cores) connected through
routers in a three-level GALS hierarchical tree. The lowest level consists of four clus-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

ters connected by a router with �ve ports: one for each cluster and one for communi-
cation to the next level. GALS hierarchical tree structure of PENC many-core allows
us distributed computing and scalability, thus ef�cient embedding of an extra process-
ing core or cluster to the chip. The lightweight cores also help to ensure that all used
cores are fully utilized. While the lightweight cores are ideal for CS kernels, they of-
ten require large amounts of memory for their model data. This is addressed with the
cluster-level shared memory that is interfaced to the bus. The shared memory can be
accessed within the cluster on the bus and from other clusters through the router. Sec-
tion 5.3 provides experimental results showing how each of these many-core features
are well suited for OMP CS kernels. Figure 3 shows the block diagram of PENC many-
core with the details of bus-based cluster and processor block diagram. It also gives
brief idea of implementation results on 65nm, 1V TSMC CMOS technology. Below are
key characteristics of the PENC many-core platform.

Bus-Based Cluster . Each 16-bit core consists of a six-stage processor pipeline, 128-
deep instruction and data memories, and 16 registers. For all ALU instructions, the
sources and destinations can be either registers or local data memory references. In
either case, the read data is available before the execute stage, eliminating the need
for separate LDand STinstructions for applications whose state �ts in the local data
memory. Register accesses are resolved in the Instruction-Decode stage, and accesses
to a core's local data memory are resolved in the Memory-Decode stage.

Cores use the IN and OUTinstructions to communicate with each other. When a core
executes an OUTinstruction, the data and relevant addressing information is packe-
tized and sent to its output FIFO. When data is present in a core's output FIFO, it
requests to use the bus. The bus then arbitrates between requests, only granting those
whose transactions can be completed. Each core has an input FIFO, and if the input
FIFO corresponding to the OUTis not full, the OUTcan be completed. The node wraps
the processing core pipeline with layers of buffering and is the level that interacts with
the bus. The architecture in Figure 3 shows input and output FIFOs to store data to be
sent to and received from the bus. The destination core is used by the bus to forward
the packet to the appropriate location, and the source core is used by the request-
ing node to satisfy its corresponding IN instruction. The destination address and data
�elds instructs the recipient core address of the data to be stored.

The Processing core contains additional buffering on the input in the form of a 32-
element content-addressable memory (CAM). It is used to store packets from the bus
and allow a �nite state machine to �nd a word where the source core �eld corresponds
to that in the IN instruction itself. For example, if the core is executing IN 3, the FSM
searches through the CAM to �nd the �rst word whose source core is equal to three.
This word is then presented to the processing core and processing continues.

Distributed Cluster Memory . Within each cluster, three 1024 � 16 SRAM cells
compose a distributed cluster memory (DCM). The processor nodes within the clus-
ter can all access the cluster memory via the bus. To access the memory, cores use
two memory instructions: LD and ST. The maximum depth of the cluster memory is
216 words since registers and data memory are both 16-bits wide and can therefore
supply a 16-bit memory address. Using data memory as operands for instructions is
still bene�cial to using LDand STfrom an ef�ciency standpoint because of the one-cycle
read/write capability. Referencing data from the cluster memory has latency and re-
quires a separate instruction, which reduces the overall instructions per cycle that the
pipeline can complete. However, the LDand STinstructions enable the use of a much
larger addressable space, which allows the PENC to support this application.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

4.2. Platform Implementation and Experimental Set-up

The paper implements OMP algorithm on PENC many-core platform, low power ARM
CPU and K1 GPU combination. We carefully implement OMP algorithm on different
platforms while considering available cache size, processing cores and adopting to plat-
form speci�c libraries.

4.2.1. ARM CPU/ K1 GPU: nvidia Jetson TK1. For each choice of platform, a series of
benchmarks related to run-time and power are evaluated to determine the solution
with the best energy ef�ciency. For the CPU solution, OpenBLAS library is selected
based on its performance and usability, it builds the library speci�cally tuned for the
targeted architecture. Single Program Multiple Thread (SPMT) approach is adopted
to align with the GPU's execution model. In SPMT con�guration, the OMP program
utilizes one main process thread and several child processing threads. Each thread is
assigned a chunk of the total number of columns to work based on equation (2).

Work Chunk =
Number of Columns

Active Threads
(2)

The CPU program operates in three steps: 1. Memory allocation 2. Spawn child threads
3. Processing on allocated memory. Each child thread executes a series of matrix opera-
tions with minimal memory movements, and once the main thread is �nished, it tears
down the child threads leaving the completed sparse matrix present in the passed
reference memory.

In case of GPU implementations, we use compute uni�ed device architecture BLAS
(cuBLAS) library in CUDA R version 6.5. The GPU implementation follows same steps
as outlined for CPU implementation, however the work �ow is modi�ed for concur-
rency and CUDA streams. CUDA streams provided by nvidia platform allows concur-
rent implementation i.e. it has ability to execute a kernel while enabling asynchronous
memory transfers. The amount of concurrency achieved by a device is dependent on a
series of different capabilities such as: CUDA compute capability, the number of CUDA
processing cores, the number of warps per multiprocessor, the number of threads per
multiprocessor, and max registers per thread.

The TK1 platform has a single SMX containing 192 CUDA cores, a single DMA
engine, and a true uni�ed GPU/CPU memory architecture. Due to the low number
of SMX resources the maximum kernel concurrency is dependent on the occupancy
of the kernel in the SMX. We evaluated each kernel using the nvidia visual pro�ler
to assess its performance and hence its importance in optimization. The TK1 uses a
shared memory architecture with the ARM CPU and thus explicit memory movements
are not required. However, in this approach we still utilize host-to-device and device-
to-host copies for data movement.

Evaluation Methodology of TK1 Platform . The nvidia TK1 platform does not
have an easily accessible power measurement sensors. Additionally, board layout ex-
poses only a single load resistor for sub system power measurements. In this paper
we present data based on total system level current consumption which includes the
subsystems of the CPU and GPU. The current is measured using a sense resistor con-
nected in series with the platform's 12.15V supply voltage [Stokke et al. 2015].

To ef�ciently measure only CPU and GPU performance and avoid measurements
contributing to subsystems of TK1 platform we revised the original set up. Our re-
vised set up use an external sensor system comprised of a TI INA219 and an Arduino
Uno as shown in Figure 4. The INA219 is designed to measure the voltage across a
sense resistor connected in series to a power rail. The electrical resistance of the sense
resistor must be an order of magnitude smaller than the main circuity to avoid affect-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Related Work
	Background
	Compressive Sensing Problem
	Orthogonal Matching Pursuit Algorithm

	Proposed Framework
	Processing Platform Architecture
	ARM CPU/K1 GPU
	PENC Many-Core Architecture

	Platform Implementation and Experimental Set-up
	ARM CPU/ K1 GPU: nvidia Jetson TK1
	PENC Many-Core Platform

	Implementation Result Analysis
	Experimental Set-up & Performance Metric
	Experimental Set-up
	Performance Metric

	ARM CPU/K1 GPU
	PENC Many-Core
	Execution Time Analysis
	Energy Efficiency Analysis

	Area Efficiency Analysis
	Comparison Results

	Application Case Study and Analysis
	Face Detection Application
	Face Detection Application Analysis

	Conclusion
	Discussions

