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Abstract—Personal monitoring systems require sampling and
processing on multiple streams of physiological signals to extract
meaningful information. These systems require a large number
of digital signal processing and machine learning kernels which
typically require significant amounts of power. However, to be
used in a wearable environment, the processing system needs
to be low-power, real-time, and light-weight. In this paper, we
present a personalized stress monitoring processor that can
meet these requirements. First, various physiological features
are explored to maximize stress detection accuracy using two
machine learning classifiers including Support Vector Machine
(SVM) and K-Nearest Neighbors (KNN). Among different ex-
tracted features from four physiological sensors, heart rate and
accelerometer features have 96.7% (SVM) and 95.8% (KNN)
detection accuracy. In the second part, two fully flexible and
multi-modal processing hardware designs are presented that
consist of feature extraction and classification algorithms. We
first demonstrate the ASIC post-layout implementation of both
designs in 65 nm CMOS technology as well as the implementation
on Artix-7 FPGA. The proposed SVM and KNN processors on
the ASIC platform occupy an area of 0.17 mm2 and 0.3 mm2 and
dissipate 39.4 mW and 76.69 mW power, respectively. The ASIC
implementation improves the energy efficiency by 42x (SVM)
and 12x (KNN) over FPGA implementations. The entire stress
monitoring system is further evaluated against a number of other
platforms including Raspberry Pi 3B, NVIDIA TX1 GPU and
NVIDIA TX2 GPU. The experimental results indicate that ASIC
and FPGA platforms have the highest throughput (decision/sec)
as well as lowest power consumption over all other platforms.
The ASIC/FPGA implementations improve the energy efficiency
(throughput/power) by 6/5 and 5/4 order of magnitude compared
to TX1 GPU and Raspberry pie ARM platforms, respectively.

Index Terms—ASIC, FPGA, K-nearest neighbor (KNN), per-
sonalized stress detection, support vector machine (SVM)

I. Introduction

Personalized wearable biomedical systems enable the acqui-
sition of various physiological and behavioral data that can be
used to make general inferences about the state of human [1].
These systems need to process parallel streams of multi-
physiological data in real-time and within a limited power
budget. Furthermore, they often utilize applications which
require a large number of digital signal processing (DSP)
and machine learning (ML) techniques to extract meaningful
knowledge. Stress detection is one such health monitoring
application. In fact, there have been several recent studies on
stress detection that have used multiple physiological signals,
such as electrocardiogram (ECG), heart rate (HR), electro-
dermal activity (EDA), electromyography (EMG), respiration,
blood pressure and oxygen saturation (SpO2) [2], [3], [4], [5].

The relatively high amount of power consumption and
delays required to transmit raw or even compressed data,
make it essential to process sensor data locally on-board
[6], [7], [8], [9], [10], [11], [12], [13]. For this class of
personalized biomedical applications, the sampling frequency
is relatively low in the range of 50 Hz to 2 KHz. Thus most
of the current processing platforms can meet the sampling
deadlines when running at high clock frequency. However,
they cannot fit within the stringent power budget of wearable
devices.

The main focus of this work is designing a low-power,
lightweight and real-time local processor for a personalized
stress detection system. All design steps can be used and
modified for other biomedical applications based on their
specific characteristics including biomedical signals, compu-
tational latency and energy consumption. All sensor data
is processed locally on-board, and only a final decision is
sent out, rather than sending preprocessed raw sensor data.
For this purpose, we examined the implementation of stress
detection on ASIC and FPGA platforms as well as embedded
commercial-off-the-shelf platforms including Raspberry Pi 3B,
NVIDIA Jetson TX1 GPU, and NVIDIA Jetson TX2 GPU.
The main contributions of the paper include:
• Proposing an efficient local processor for stress detection

using multi-modal physiological signals, feature extrac-
tion techniques and machine learning classifiers.

• Thorough analysis of features extracted from multi-sensor
data with SVM and KNN ML classifiers to find the best
feature sets and their combination.

• Implementing the flexible on-board processor on ASIC
and FPGA platforms for personalized stress detection.

• Comparing the stress detection processor’s performance
metrics with existing embedded commercial-off-the-shelf
platforms including ARM A54 CPU on Raspberry Pi and
NVIDIA GPUs on Jetson TX1 and TX2.

The remainder of this paper describes the different sections
of multi-modal stress monitoring system, two different recon-
figurable hardware designs, hardware experimental results and
comparison with embedded off-the-shelf platforms.

II. Classifier and feature extraction analysis

A. Description of Dataset

In this paper, we used the data from a naturalistic shooting
task which consists of multi-physiological and behavioral
recordings from 15 subjects [14].



1549-7747 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2018.2799821, IEEE
Transactions on Circuits and Systems II: Express Briefs

2

Figure 1. Block diagram of a multi-physiological stress detection system con-
taining data acquisition by sensors, feature extraction, and machine learning
classifier to generate the result.

Figure 2. 300-degree simulator to collect the multi-physiological data
during different levels of stress using the embedded sensors in wearable
LifeShirt [14].

The participants performed a shooting task in a simulator in
which they had to discriminate enemy versus friendly targets
and decide to shoot or refrain respectively. Three levels of
stress were induced by manipulating performance feedback
on incorrect trials in a blocked design: low (No feedback),
medium (visually displayed or Lifebar), and high (Shock).
This dataset was collected for one experiment to evaluate the
effect of different levels of stress on participants’ behavior.
It has various physiological recordings and can be used for
stress detection evaluation. For this paper, only the low-stress
and high-stress conditions were studied.

B. Feature Extraction

Using the raw physiological data in health monitoring
systems, which need to process multiple signals, requires a
significant amount of memory and power. Feature extraction
reduces the number of resources necessary to describe a large
set of data. Finally, using the extracted features rather than
raw data improves the classification and clustering accuracy.

Figure 3 shows raw data representation of HR and ac-
celerometer signals for individual 13. The levels of accelerom-
eter and HR signals are entirely distinctive in shock and
nofeedback condition. A total of 16 features used in the exper-
iment were derived in 35-second windows and are elaborated
in Table I. Figure 4 represents mean HR and mean ACC.X
features from individual 13.

C. Classifier Selection and Feature Selection

After feature extraction, we need to examine which fea-
tures contain the most useful information and remove those
features that do not improve the model. In this work, we
used classification accuracy as an automated method to choose
the most appropriate features. To find the best combination
of the features, we examined the classification accuracy for

Figure 3. Raw signals’ representation for participant 13. (a) Accelerometer
(X axis) and (b) HR.

Figure 4. Extracted features representation for participant 13. (a) mean Axis-x
and (b) mean HR.

each feature for all individuals independently. We utilized
two popular supervised binary classifiers, SVM and KNN.
Figure 5 shows the average accuracy across all 15 individuals
for each feature for both SVM and KNN classifiers. The
seven highlighted features achieve the highest accuracy in
stress detection across all individuals. Since our final goal
is to implement one low-power and lightweight processor
for stress monitoring, we are interested in finding the best
reduced feature set to detect stress accurately. We utilized
attribute selection function in WEKA tool to find the best
feature set among these seven features. The final feature set
has four features including mean HR, mean Acc.X, mean
Acc.Y and mean Acc.Z. Table II shows the average accuracy
of each feature and the concatenated feature set. For SVM
and KNN classifiers, the detection accuracy of feature set is
on average 17.94% and 10.95%, higher than that of individual
features, respectively. Thus, we designed and proposed the
following hardware processors for stress detection based on
the concatenated feature set.
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Feature No. Sensors Features
1 to 7 ECG Mean HR, Std HR, Mean RR, Std RR

LF-HRV, HF-HRV, LF/HF ratio
8 to 14 Accelerometer Mean of X,Y and Z axis

Standard deviation of X,Y and Z axis
Magnitude of three axes

15 Resp. Rate Mean RR
16 SpO2 Mean SpO2

Table I
16 extracted features from four physiological sensors per each 35-second

window.

Figure 5. Average of two-level stress detection accuracy using multi-
physiological sensors and corresponding features for 15 individuals. The
features with the highest accuracy (more than 65% for both SVM and KNN)
are highlighted.

III. Feature Extraction and reconfigurable classifier
hardware

A. Proposed Scalable and Pipeline SVM Processor

Figure 6.a shows a detailed architecture of the linear SVM
processor used for a stress monitoring system based on four
extracted features from the heart rate and accelerometer sen-
sors. The proposed parallel pipelined architecture can be easily
reconfigured to process any number of features and support
vectors for a variety of applications. The support vectors (SV),
bias (b) and other required coefficients were calculated offline
using the SVMtrain MATLAB function. Each memory block
is loaded with pre-computed weighted support vectors from a
trained model for each feature. There are sufficient registers
in this design to store the intermediate results in the pipeline
scheme. The classifier receives the features derived in 35-
second windows as testing input. The dot product operation
runs between the testing data and all supporting vectors
available in RAM blocks. This is followed by the parallel dot
product operation, which is added with bias parameter at the
final stage to find the prediction result.

B. Proposed Scalable Semi-Parallel KNN Processor

Figure 6.b shows a high-level block diagram of the KNN
processor used for the stress monitoring system based on
four extracted features from the heart rate and accelerometer
sensors and can be reconfigured to process any number of
feature vectors for different applications. The training samples
(256 training samples for personalized stress monitoring) and
their corresponding labels are stored in the ROM block. The
extracted feature set (4 features) from testing samples from the
given 35-second window is stored in the buffer component.
The four subtractors, four multipliers, and one adder modules
are used to find the Euclidean distance between the given test
sample and training data in parallel. However, the training
data was read from the ROM block serially. The sorting block
is responsible for finding the K smallest distance between

Classifier SVM KNN
Mean HR 78.99% 83.06%

Mean Acc.X 88.79% 92.13%
Mean Acc.Y 72.83% 76.66%
Mean Acc.Z 74.38% 87.56%

Combined feature set 96.7% 95.81%
Table II

The average accuracy of the four most important features as well as
concatenated feature set across all 15 participants. For SVM and KNN
classifiers the detection accuracy of concatenated feature set on average

17.94% and 10.95% higher than that of individual features, respectively.

Figure 6. Block diagram of the proposed reconfigurable processors using (a)
SVM and (b) KNN for personalized stress detection system. The concatenated
feature set mean-HR, mean ACCX, mean-ACCY and mean ACCZ are stored
in the memory blocks.

the testing sample with all training data. The voting module
generates the label of the testing sample based on the majority
voting at the final step. The Finite state machine (FSM) module
is responsible for syncing and controlling all components in
the design. This design is fully configurable for a variable
number of features and different size of training data.

IV. ASIC and FPGA Implementation and Results

A. ASIC Results

The stress detection processors for both SVM and KNN
classifier configurations are synthesized and placed and routed
in the 65 nm TSMC CMOS technology. Figures 7 and 8 shows
the layout of the proposed stress detection processors (features
extraction + classifier) and post layout results.

The SVM processor occupies 0.17 mm2 and dissipates
approximately 39.4 mW when running at its maximum fre-
quency of 250 MHz. When the chip operates at the nominal
frequency of 5 Hz required to meet the 17.5-second deadline,
it dissipates 0.76 nW (linearly scaled with frequency), which
results in 13.4 nJ at 1 V to classify one 35-second window
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ASIC Implementation Results
Technology 65 nm, 1 V

Logic Utilization 91%
Area 0.17 mm2

Max Freq. 250 MHz
Nominal Freq. 5 Hz
Total Power* 0.76 nW

Total Exe. Time 340 ns/170 cycles
Energy* 13.4 nJ

Figure 7. Layout view and post-layout implementation results of the proposed
multi-modal SVM processor (64 support vectors) + feature extraction. The
highlighted regions indicate the location of four dot product components and
feature extraction on the chip.*The power and energy are reported for the
nominal frequency where the computation is done in 17.5-second interval
window.

ASIC Implementation Results
Technology 65 nm, 1 V

Logic Utilization 94%
Area 0.3 mm2

Max Freq. 250 MHz
Total Exe. Time 4.1 us/1025 cycles
Nominal Freq. 59 Hz
Total Power* 17.96 nW

Energy* 0.31 uJ

Figure 8. Layout view and post-layout implementation results of the proposed
multi-modal KNN processor (256 training data) + feature extraction. The
highlighted regions indicate the location of training memory, sorting, distance
calculation and feature extraction on the chip. *The power and energy are
reported for the nominal frequency where the computation is done in 17.5-
second interval window.

of input. The KNN processor runs at the nominal frequency
of 59 Hz and dissipates the power of 17.96 nW. It consumes
0.31 µJ for stress detection per window.

B. FPGA Results

As a second hardware-based platform for stress detection
implementation, we utilized Xilinx Artix-7 FPGA. FPGAs are
highly flexible allowing on-the-fly configuration to optimize
bit resolution, clock frequency, parallelization, and pipelining
for a given application. The main disadvantages of FPGAs,
however, are that they have substantially higher leakage power
and require writing low-level logic blocks in HDL [6]. For
the stress detection case study, complete FPGA hardware
for SVM and KNN machine learning kernels in addition
to feature extraction were developed in Verilog that utilized
highly parallel, highly pipelined DSP and ML kernels. Both
real-time and simulated projections using commercial tools
were used to perform timing and power analysis when running
test stimulus. For stress detection application, the Artix-100T
FPGA is targeted on the Nexys platform. Table III summarizes
the results of implementing the stress detection case study
using SVM and KNN on Artix-7 FPGA.

V. Software-based Platforms

A. NVIDIA Jetson TK1

B. Raspberry Pi
VI. Comparison with embedded off-the-shelf platforms

We examined the implementation of stress detection on sev-
eral embedded commercial-off-the-shelf processors including
Raspberry Pi 3B, Jetson TX1 GPU, and Jetson TX2 GPU as
well as hardware platforms.

Design SVM KNN Improvement

Registers (#) 278 440 1.6x
LUTs (#) 197 692 3.5x

Memory (Kb) 4 16 4x
Max Freq. (MHz) 200 200 -
Latency (cycles) 170 1025 6x

Latency (us) 0.85 5.125 6x
Nominal Freq. (Hz) 58 9 6.5

Dynamic Power (nW)1 4.95 37.48 7.6x
Leakage Power (mW) 82 82 -

Energy (µJ)2 0.08 0.65 8x

Table III
The comparison of stress detection hardware implementation (classifier +
feature extraction) for SVM and KNN classifier on Artix-7 FPGA. 1. The

Dynamic power results are for the nominal frequency to meet the
17.5-second window interval. 2. Since FPGA has significant leakage power

(Dominate compared to dynamic power), the energy results are based on
dynamic power.

Figure 9. Comparison of energy-delay-product (EDP) for the stress detection
case study with KNN and SVM classifiers when implemented on several
processor combinations including Raspberry Pi, Jetson TX1 GPU, Jetson
TX2 GPU, Artix-7 FPGA and ASIC. The Raspberry Pi was considered as
a baseline. The ASIC implementations for both designs have the lowest EDP.

Raspberry Pi 3B is packed with 1.2 GHz Quad-core ARMv8
CPU and 1GB LPDDR2 RAM. It features Bluetooth and Wire-
less connectivity and powered by the Broadcom BCM2837
SoC.

Jetson TX1 and Jetson TX2 development boards are packed
with a 256-core NVIDIA Maxwell-based GPU and NVIDIA
Pascal-based GPU, respectively. We used the serial C code
to perform stress detection on Raspberry Pi single CPU core.
For data-level parallelization execution on the GPU, we used
PyCuda. We utilized only one block on GPU to parallelize
both KNN (with 256 threads for 256 training data) and SVM
(64 threads for 64 support vectors). For a fair comparison
among different platforms, the power of Nexys board is added
to FPGA results. Tables IV and V show the comparison results
for all platforms for both classifiers.

The ASIC is the best among all other platforms with respect
to throughput, energy consumption, and energy efficiency. To
better understand the benefit of ASIC and FPGA implemen-
tation of stress detection, Figure 9 provides energy-delay-
product (EDP) comparison among all platforms. The ASIC
implementation has significantly lower EDP than all other
platforms. Minimizing the EDP is essential for biomedical
applications, as it is critical to both promptly making decisions
and consuming minimal energy. The ASIC has 16x and 100x
lower EDP compared to FPGA for KNN and SVM imple-
mentation, respectively. Furthermore, ASIC’s energy efficiency
is 11x and 42x larger than FPGA for KNN and SVM,
respectively. Although ASIC hardware implementation signif-
icantly improves energy efficiency, but it may not be practical
due to the cost and time to market constraints. The FPGA
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Processor Clock Power Throughput Energy Energy Efficiency Energy Efficiency Improvement

(MHz) (mW ) (dec/sec) (mJ) (dec/sec/watt) (over baseline)
ARM A53 (baseline) 900 1,480 2 746.36 1.33 1x

TX2 GPU 854 2,120 130.54 16.23 61.58 46x
TX1 GPU 998 2,430 225 10.76 92.89 69x

Artix-7 100T FPGA 200 728 195,121 0.0035 268,024 200,044x
ASIC 250 76.69 243,902 0.0003 3,180,368 2,373,712x

Table IV
Breakdown of hardware results from running stress detection applications on a variety of processing platforms (Feature Extraction + KNN classifier with

256 training samples). Results include throughput, energy, and energy efficiency. Implementation on ARM A53 CPU on Raspberry Pi is fully serial on a
single CPU and is used as baseline for comparison For FPGA the power of Nexys board is added.

Processor Clock Power Throughput Energy Energy Efficiency Energy Efficiency Improvement

(MHz) (mW ) (dec/sec) (mJ) (dec/sec/watt) (over baseline)
ARM A53 (baseline) 900 1530 5.29 289.17 3.45 1x

TX2 GPU 854 2090 212.76 9.82 101.8 29x
TX1 GPU 998 2610 357.14 7.308 136.83 39x

Artix-7 100T FPGA 200 702 1,250,000 0.00056 1,780,626 514,903x
ASIC 250 39.4 2,941,176 0.000013 74,649,149 21,586,294x

Table V
Breakdown of hardware results from running stress detection applications on a variety of processing platforms (Feature Extraction + SVM classifier with
64 support vectors). Results include throughput, energy, and energy efficiency. Implementation on ARM A53 CPU on Raspberry Pi is fully serial on a single

CPU and is used as baseline for comparison. For FPGA the power of Nexys board is added.

solution achieves the second EDP for stress detection and
offers reprogrammability and low development cost compared
to the ASIC implementation.

VII. Conclusion
Health monitoring applications share strong commonalities,

including requiring sampling from several physiological sig-
nals at various rates, preprocessing, feature extraction and
machine learning kernels. In this paper, we demonstrated an
accurate stress monitoring system by utilizing multiple phys-
iological signals. Our analysis indicated that using heart rate
and accelerometer signals for determining the level of stress,
generated the most accurate classification with both KNN and
SVM classifiers. The average accuracy of the personalized
stress monitoring system with KNN and SVM classifiers are
95.8% and 96.7%, respectively. This research also examined
the choice of various processors including ASIC, FPGA,
Raspberry Pi, NVIDIA TX1 and TX2 for energy-efficient
processing of physiological signals for the multi-modal stress
detection application. The experimental results showed that
the post-layout (ASIC) implementation of the SVM and KNN
processors minimizes power consumption and latency as well
as maintaining a low-area footprint for personalized stress
monitoring. The ASIC implementation improves the energy
efficiency by 42x and 12x over FPGA platform for SVM and
KNN implementations, respectively.
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