
Accelerating Compressive Sensing Reconstruction
OMP Algorithm with CPU, GPU, FPGA and

Domain Specific Many-Core
Amey Kulkarni and Tinoosh Mohsenin

Department of Computer Science & Electrical Engineering
University of Maryland, Baltimore County

ameyk1@umbc.edu, tinoosh@umbc.edu

Abstract—Compressive Sensing (CS) signal reconstruction can
be implemented using convex relaxation, non-convex, or local
optimization algorithms. Though the reconstruction using convex
optimization, such as the Iterative Hard Thresholding algorithm,
is more accurate than matching pursuit algorithms, most re-
searchers focus on matching pursuit algorithms because they
are less computationally complex. Orthogonal Matching Pursuit
(OMP) is a greedy algorithm, which solves the problem by
choosing the most significant variable to reduce the least square
error. In this paper, we propose an efficient parallel architecture
for OMP CS reconstruction. For architecture implementation,
we perform measurement and sparsity analysis to reduce the
complexity. The proposed architecture is platform independent
and is implemented on 7 different platforms including general
purpose CPUs, GPUs, a Virtex-7 FPGA and a domain specific
many-core. The implementation results indicate that reconstruc-
tion time on FPGA is improved by 3× compared to previous
FPGA implementation, whereas GPU implementation is 4× faster
than the previously proposed GPU-based OMP architecture. The
CPU implementation is 6× faster, compared with previous CPU-
based implementation. The domain specific many-core acheives
24 times faster reconstruction time when compared to both GPU
and CPU implementations.

I. Introduction
Compressive Sensing (CS) has received a significant atten-

tion due to the reduction in sampling and measurements, and
therefore, resulting in less time and power consumption of sig-
nal acquisition. Various applications, such as signal de-noising,
satellite remote sensing, image sensing for SAR echo mode
and mobile communication, are aiming to use CS. Current re-
search is focused on both sampling techniques and enhancing
the reconstruction algorithms in terms of accuracy [1], [2] and
complexity reduction on different platforms [3], [4], [5], [6],
[7], [8], [9], [10].

Though CS has several advantages, CS reconstruction tech-
niques are very complex and computational intensive. In this
paper, we propose a platform independent architecture for CS
reconstruction to reduce reconstruction time. The proposed
architecture is implemented on various platforms including
general purpose CPUs, GPUs, a Virtex-7 FPGA and a do-
main specific many-core. The structure of this paper is as
follows: Section II briefly explains CS reconstruction OMP
algorithm; Section III discusses processing platforms used for
implementing the proposed architecture. Section IV describes
the proposed architecture. Finally, section V, discusses and

compares our implementation results on different platforms,
while comparing it with previous work.

II. Compressive Sensing and OMP algorithm
The basic theory behind CS lies in solving equation 1. Let

φ be the measurement matrix of dimension M × N, where
M is the number of measurements to be taken and N is the
length of the signal, and let x be a k-sparse signal of length
N. Multiplying these two vectors yields y of length M, which
contains the measurements obtained by the projection of φ
onto x. y = φx (1)

OMP takes two inputs: the measured signal (y) and the
measurement matrix (φ). At each iteration (t), column of φ
is chosen which is most strongly correlated with y. Least
square algorithm is used to obtain a new signal estimate. In the
next step, the amount of contribution that column y provides
is subtracted to obtain a residue, which is used for the next
iteration. Finally, after k iterations, the correct set of columns
is determined [11].

Algorithm 1 OMP Reconstruction Algorithm
1: Initialize R0 =y, φ0= ∅, Λ0=∅,Φ0 =∅ and t = 0
2: Find Index λt= max j=1...n subject to | < φ jRt−1 > |
3: Update Λt=Λt−1

⋃
λt

4: Update Qt=[Qt−1 φΛt]
5: Solve the Least Squares Problem
xt= minx || y - Qy x || 2

6: Calculate new approximation: αt= Φt xt

7: Calculate new residual: Rt= y-αt

8: Increment t, and repeat from step 2 if t<k
After all the iterations, we can find correct sparse signals.

The variables used in the algorithm are defined below:

• N× N = Images Size (e.g 128 × 128...768 × 768)
• M = Measurements (e.g 42...252)
• k = Sparsity (e.g 32)
• R = Residual Matrix (size : M × 1)
• φ = Measurement Matrix (size : M × N)
• λ = Maximum Index after Dot Product
• t = No. of iterations (k)

978-1-4799-8391-9/15/$31.00 ©2015 IEEE 970

III. Processing Platform Architecture

A. Off-the-shelf Processors

1) BlueGrid Cluster: BlueGrid is a cluster located at
UMBC’s HPC center which hosts 13 IBM BladeCenter HS22
servers comprising 104 cores and a few hundred gigabytes of
random access memory (RAM) with Intel Xeon processors
running Red Hat Linux (RHL), a 64-bit operating system. We
use the OpenMP tool set to perform experiments on BlueGrid.

2) GPUs and CPUs: We use two different GPU families
(Tesla M2070 and GeForce 640) and CPU platforms to show
that the proposed architecture has the least reconstruction
time compared to previous published work. To perform our
experiments we used CUDA and OpenCL. The results show
that although OpenCL and CUDA have similar platform,
memory, and programming models, CUDA implementation is
faster than OpenCL. Thus we use CUDA 6.0 for experiments.
Proposed architecture is also implemented in parallel on the
Intel Xeon using OpenCL and in serial on Intel i7 using
Matlab.

3) FPGA: The proposed re-configurable and parallel ar-
chitecture is implemented on the Virtex-7 XC7VX485T. The
architecture is implemented by using fixed point arithmetic.
The architecture is fully placed and routed on the FPGA. The
detailed evaluation of the performance is evaluated in section
V.

B. Domain Specific Many-Core
The domain specific many-core architecture consists of in-

order processors that has a 6 stage pipeline, a RISC-like DSP
instruction set, and a Hardvard memory model. It consists
of 64 low-power small cores [12], [13]. Each core operates
on a 16-bit data-path with a minimal instruction and data
memory suitable for task level parallelism. Moreover, the
cores have a limited low complexity instruction set to reduce
area and power. The cores communicate through a simple,
scalable hierarchical network that reduces the number of hops
in communication. Each core and router was synthesized,
placed and routed in a 65 nm CMOS process. Our many-
core integrated development environment (IDE) and simulator,
designed using Eclipse and Xtext Plug-in, provides the number
of cycles, instructions and data memory used per core. For
each kernel, different levels of parallelism are investigated to
analyze the run time and energy consumption.

IV. ProposedWork

Figure 1 shows that the OMP algorithm can be partitioned
in three main kernels, such as Dot product, sort and least
square. These three kernels are interdependent, hence efficient
parallel implementation of an algorithm is complex. We reduce

Fig. 1. Basic Block Diagram for OMP Reconstruction Algorithm

TABLE I
PSNR and Sparsity Analysis numbers for variety of Image Sizes with OMP

Reconstruction Algorithm
Image Sizes Sparsity k PSNR (dB)

Low Detail Medium Detail High Detail
Image Image Image

256×256 8 27.22 25.36 23.43
256×256 32 34.70 25.02 23.07
256×256 48 34.89 24.20 22.02
384×384 8 21.24 20.86 19.07
384×384 32 22.88 19.97 18.34
384×384 48 22.91 18.67 17.02
512×512 8 21.19 16.20 14.45
512×512 32 25.65 15.52 14.05
512×512 48 25.71 14.89 13.57

hardware complexity of the algorithm based on our analysis on
sparsity, number of measurements, and fixed point hardware.

A. Sparsity Analysis

From Figure 1, it’s observed that least square is the most
complex kernel in OMP, which consists of Q matrix mul-
tiplication, transpose, and inversion operations. The size of
Q matrix depends on the number of iterations, which is a
function of sparsity k (a predefined number). In this paper, we
experimented different images based on information content
with different sizes. We observed satisfactory range of PSNR
for different Sparsity count. The experiments are repeated
100 times to measure accurate PSNR of the reconstructed
image. Table I shows different sizes of images (N × N) with
different sparsity and PSNR results. The reconstructed images
are shown in Figure 4. It can be observed from Table I that,
variation in sparsity assumption has minimal effect on PSNR.
Nonetheless from the hardware perspective, it is advantageous
since it minimizes matrix to be inverted, thereby reducing
memory transfers and reconstruction time. From the above
observations we fixed the sparsity to 32, such that it reduces
the hardware complexity while also meeting a satisfactory
PSNR for the reconstructed image.

B. Measurement Analysis
In CS matching pursuit algorithms, there are different strate-

gies for choosing measurements m for exact recovery of a
signal [14]. Matrix sizes of dot product, least square kernels,
and residue calculations are dependent on measurements (m).
The dot product kernel remains the same at each iteration,
whereas the least square kernel and residue calculation block
iterates by sparsity(k) times, changing the Q matrix size at each
iteration. For each image, we performed different experiments
for various measurement counts with fixed sparsity of 32.
Figure 2 shows measurement analysis for low detailed image
(Figure 4A). It is observed that the hardware complexity
increases with number of measurements, however PSNR of
a reconstructed image remains constant after certain number
of measurements. Therefore, we chose the optimal number
of measurements for each image to maintain satisfactory
PSNR for reconstruction, while keeping minimal hardware
complexity.

C. Structure of the Proposed Architecture
Figure 3 A shows proposed architecture for CS Reconstruc-

tion OMP algorithm. The OMP algorithm has inter-dependent

971

Fig. 2. Increase in Hardware complexity and PSNR of Reconstructed Image
of OMP CS Reconstruction algorithm

kernels, which makes parallel implementation complex. For
parallel implementation, we first analyze information depen-
dency of each kernel. We determine the necessary computa-
tional system for problem solving and distributing such that it
uses less resources and reduces reconstruction time. Figure 3B
shows the task graph for CS reconstruction OMP algorithm.
Sub-tasks are distributed such that the communications among
the sub-tasks is less. Furthermore, for each task communica-
tion latency is hidden by computations.

For the matrix multiplication kernel, we use the block strip
matrix multiplication method. On the FPGA, block strip mul-
tiplication is implemented by using tree multiplier to leverage
parallel and pipeline architecture. A tree multiplier requires N
multipliers and N adders where, N is the number of columns.
Thus, the total number of operations come to be 2N − 1.
Trade-offs exist between resource utilization and latency of
operations. The architecture is developed such that at every
cycle multiplication product is calculated in parallel, while for
GPU and CPU, each node computes the multiplication. The
sort kernel is used to locate the maximum of | < φR > |. We
implement a binary tree sort algorithm which has complexity
of O(N log N). The kernel is implemented on each node,
therefore the complexity is reduced. The algorithm needs
N space of memory. We use cache and on-chip memories
(BRAMs) to reduce communication overhead. Finally, least
square, the most important kernel of the algorithm is imple-
mented by using LU decomposition method. We use block LU
algorithm for parallel implementation and MAGMA libraries
to calculate LU decomposition for GPU implementation, and
resources are reused to reduce the area of the architecture
while implementing on hardware.

V. Result Analysis and Comparison

A. Image Quality
In this paper, we use different test images on the basis of in-

formation content of the image. Figure 4 shows reconstructed
images with 33% measurements and 32 sparsity. It can be
observed that, Figure 4A has low level of information content
and the reconstruction PSNR is 35 dB, whereas Figure 4B has
medium level of information content and the reconstruction
PSNR is 26.3 dB, and Figure 4C has relatively large amount
of information content and reconstruction PSNR is 24.5 dB.

Fig. 4. OMP Reconstructed Images with fixed point arithmetic and Sparsity
32. Left Image with a low level of detail, center Image with a medium level
of detail and right Image with a relatively large amount of detail (Image
Courtesy: [15])

B. Comparison with Previous Work
In this paper we compare our results with various OMP

algorithm architectures on different and appropriate hardware
platforms (Table II). From previous FPGA implementation of
OMP, the reconstruction time on Xilinx Virtex-5 FPGA for
signal size of 128×128 with sparsity 5, is found to be 24 µs [6].
The OMP implementation on Xilinx Virtex-6 FPGA for signal
vector of 128 with sparsity 5, requires 16 µs to reconstruct the
signal [7]. Whereas, for signal size 128×128 with sparsity 5
and 33% measurements, it takes a total run time of 10 µs [4].
Therefore, compare to previous FPGA implementations of
OMP algorithm our implementation is 3× faster.

On the other hand, on nVIDIA GeForce GPU, for signal
vector of 1024 with sparsity 12, OMP algorithm takes 37.5 ms
to reconstruct the signal. Compare to [10], the proposed
architecture is 4× faster on nVIDIA GeForce 640. While com-
paring with previous CPU implementation [9], the proposed
architecture is 6× faster than Intel Xeon. Our domain specific
many-core reconstructs 128×128 image in 2.8 ms, which is
11× and 4.4× faster than the same implementation on Intel
Core i7 and Intel Xeon, respectively.

The proposed architecture works with different signal sizes
and fixed sparsity. Though the sparsity is higher for proposed
architecture the comparison table II shows that, the proposed
architecture perform better than previous work irrespective of
hardware platform.

VI. Conclusions

In this paper, we proposed a platform independent archi-
tecture for OMP compressive sensing reconstruction. Several
parameters including sparsity, number of measurements and
fixed point hardware optimization were analyzed to reduce
the hardware complexity. The proposed architecture is im-
plemented on various platforms including general purpose
CPUs, GPUs, Virtex-7 FPGA and a domain specific many-
core and results are compared. Depending on the platform
implementation, the proposed architecture performs 3× to 24×
faster than the previously published papers.

972

Fig. 3. (A) Proposed Architecture (B) Task Graph for CS Reconstruction OMP algorithm

TABLE II
Comparison with PreviousWork

Signal Spars Reconstruct Improve
Length -ity Time -ment

FPGA 128×128 5 24µs Base
(Virtex-5) [6] Architecture

FPGA 128×1 5 16µs 1.5×
(Virtex-6) [7]

FPGA 128×128 5 10µs 2.4×
(Virtex-5) [4]

ASIC 500×1000 - 0.16 ms 0.15×
(65nm) [8]

Intel 1024×1 12 68 ms Base
Core i7 [9] Architecture

nVIDIA 1024×1 12 37.5 ms Base
GeForce [10] Architecture

FPGA Virtex-7
128×128 8.97µs 2.67×
256×256 32 9.32µs 2.57×

(This Work) 512×512 10.12µs 2.37×

nVIDIA GeForce
128×128 11.004 ms 3.4×
256×256 32 11.25 ms 3.34×

(This Work) 512×512 11.4889 ms 3.26×

nVIDIA Tesla
128×128 47.1 ms -
256×256 32 48.5 ms -

(This Work) 512×512 51.7 ms -

Intel Xeon
128×128 12.43 ms 5.47×
256×256 32 16.8 ms 4×

(This Work) 512×512 51.5 ms 1.32×

Intel Core i7
128×128 31.2 ms 2.17×
256×256 32 125 ms -

(This Work) 512×512 620 ms -

BlueGrid
13.11ms -

128×128 32 12.48 ms -
(This Work) 13.97 ms -

Custom
Many-Core 128×128 8 2.8 ms 11x, 4.4x

61 Cores (This work) i7 and Xeon

References

[1] Yuejie Chi and R. Calderbank, “Knowledge-enhanced matching pursuit,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, May 2013, pp. 6576–6580.

[2] Asmita Korde, Damon Bradley, and Tinoosh Mohsenin, “Detection
performance of radar compressive sensing in noisy environments,”
International SPIE Conference on Defense, Security, and Sensing, May
2013.

[3] J.L.V.M. Stanislaus and T. Mohsenin, “Low-complexity fpga implemen-
tation of compressive sensing reconstruction,” in Computing, Networking
and Communications (ICNC), 2013 International Conference on, Jan
2013, pp. 671–675.

[4] J.L.V.M. Stanislaus and T. Mohsenin, “High performance compressive
sensing reconstruction hardware with qrd process,” in Circuits and
Systems (ISCAS), 2012 IEEE International Symposium on, 2012, pp.
29–32.

[5] Amey M. Kulkarni, Houman Homayoun, and Tinoosh Mohsenin, “A
parallel and reconfigurable architecture for efficient omp compressive
sensing reconstruction,” in Proceedings of the 24th Edition of the Great
Lakes Symposium on VLSI, New York, NY, USA, 2014, GLSVLSI ’14,
pp. 299–304, ACM.

[6] A. Septimus and R. Steinberg, “Compressive sampling hardware
reconstruction,” in Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on, May 2010, pp. 3316–3319.

[7] Guoxian Huang and Lei Wang, “Soft-thresholding orthogonal matching
pursuit for efficient signal reconstruction,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on,
May 2013, pp. 2543–2547.

[8] Alexandre Borghi, Jrme Darbon, Sylvain Peyronnet, TonyF. Chan, and
Stanley Osher, “A simple compressive sensing algorithm for parallel
many-core architectures,” Journal of Signal Processing Systems, vol.
71, no. 1, pp. 1–20, 2013.

[9] Lin Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, “High-speed
compressed sensing reconstruction on fpga using omp and amp,” in
Electronics, Circuits and Systems (ICECS), 2012 19th IEEE Interna-
tional Conference on, Dec 2012, pp. 53–56.

[10] M Andrecut, “Fast GPU implementation of sparse signal recovery from
random projections,” 2008.

[11] J. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. on Information Theory,
vol. 53, no. 12, pp. 4655–4666, 2007.

[12] J. Bisasky, H. Homayoun, F. Yazdani, and T. Mohsenin, “A 64-core
platform for biomedical signal processing,” in Quality Electronic Design
(ISQED), 2013 14th International Symposium on, March 2013, pp. 368–
372.

[13] J. Bisasky, D. Chandler, and T. Mohsenin, “A many-core platform
implemented for multi-channel seizure detection,” in Circuits and
Systems (ISCAS), 2012 IEEE International Symposium on, May 2012,
pp. 564–567.

[14] Deanna Needell and Joel A. Tropp, “Cosamp: Iterative signal recovery
from incomplete and inaccurate samples,” Commun. ACM, vol. 53, no.
12, pp. 93–100, Dec. 2010.

[15] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing
(3rd Edition), Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[16] Amey Kulkarni and Tinoosh Mohsenin, “Parallel heterogeneous archi-
tectures for efficient omp compressive sensing reconstruction,” Interna-
tional SPIE Conference on Defense, Security, and Sensing, May 2014.

[17] Mohammad Khavari Tavana, Amey Kulkarni, Abbas Rahimi, Tinoosh
Mohsenin, and Houman Homayoun, “Energy-efficient mapping of
biomedical applications on domain-specific accelerator under process
variation,” in Proceedings of the 2014 International Symposium on Low
Power Electronics and Design, New York, NY, USA, 2014, ISLPED
’14, pp. 275–278, ACM.

973

